Bibliography
- [1]
-
H. A. Wheeler, “Fundamental Limitations of Small Antennas,” Proceedings of the Institute of Radio Engineers (IRE) , vol. 35, no. 12, pp. 1479–1484, 1947, doi: 10.1109/JRPROC.1947.226199 .
- [2]
-
D. T. McGuiness, S. Giannoukos, A. Marshall, and S. Taylor, “Parameter Analysis in Macro-Scale Molecular Communications using Advection-Diffusion,” IEEE Access , vol. 6, pp. 46 706–46 717, 2018, doi: 10.1109/ACCESS.2018.2866679 .
- [3]
-
D. T. McGuiness, S. Giannoukos, A. Marshall, and S. Taylor, “Experimental Results on the Open-Air Transmission of Macro-Molecular Communication using Membrane Inlet Mass Spectrometry,” IEEE Communications Letters , vol. 22, no. 12, pp. 2567–2570, 2018, doi: 10.1109/LCOMM.2018.2875445 .
- [4]
-
D. T. Mcguiness, S. Giannoukos, A. Marshall, and S. Taylor, “Modulation Analysis in Macro-Molecular Communications,” IEEE Access , vol. 7, pp. 11 049–11 065, 2019, doi: 10.1109/ACCESS.2019.2892850 ,
issn : 2169-3536. - [5]
-
T. Nakano, A. W. Eckford, and T. Haraguchi, Molecular Communication , . Cambridge University Press, 2013, ISBN-13: 978-1139149693 .
- [6]
-
W. Guo, C. Mias, N. Farsad, and J.-L. Wu, “Molecular versus Electromagnetic Wave Propagation Loss in Macro-Scale Environments,” IEEE Transactions on Molecular, Biological and Multi-Scale Communications , vol. 1, no. 1, pp. 18–25, 2015, doi: 10.1109/TMBMC.2015.2465517 .
- [7]
-
M. Stojanovic, “Acoustic (Underwater) Communications,” in Wiley Encyclopedia of Telecommunications , , ISBN-13: 978-0471219286 , Wiley Online Library, 2003.
- [8]
-
P. Tyack, “Acoustic Communication Under the Sea,” in Animal acoustic communication , , ISBN-13: 978-3642762208 , Springer, 1998, pp. 163–220.
- [9]
-
D. E. Kroodsma and E. H. Miller, Ecology and Evolution of Acoustic Communication in Birds , . Cornell University Press, 1996, ISBN-13: 978-0801482212 .
- [10]
-
M. Stojanovic and J. Preisig, “Underwater Acoustic Communication Channels: Propagation Models and Statistical Characterization,” IEEE Communications Magazine , vol. 47, no. 1, pp. 84–89, 2009, doi: 10.1109/MCOM.2009.4752682 ,
issn : 0163-6804. - [11]
-
R. A. Freitas, Nanomedicine, Volume I: Basic Capabilities , . CRC Press, 1999, ISBN-13: 978-1570596803 .
- [12]
-
I. F. Akyıldız, F. Brunetti, and C. Blázquez, “Nanonetworks: A New Communication Paradigm,” Computer Networks , vol. 52, no. 12, pp. 2260–2279, 2008, doi: 10.1016/j.comnet.2008.04.001 .
- [13]
-
W. Davis, T Yang, E. Caswell, and W. Stutzman, “Fundamental Limits on Antenna Size: A New Limit,” IET Microwaves, Antennas & Propagation , vol. 5, no. 11, pp. 1297–1302, 2011, doi: 10.1049/iet-map.2010.0604 .
- [14]
-
Y. Tanaka, S. Haruyama, and M. Nakagawa, “Wireless Optical Transmissions with White Colored LED for Wireless Home Links,” in International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) , doi: 10.1109/PIMRC.2000.881634 , IEEE, vol. 2, 2000, pp. 1325–1329.
- [15]
-
M. U. Mahfuz, D. Makrakis, and H. T. Mouftah, “On the Characterization of Binary Concentration-Encoded Molecular Communication in Nanonetworks,” Nano Communication Networks , vol. 1, no. 4, pp. 289–300, 2010, doi: 10.1016/j.nancom.2011.01.001 .
- [16]
-
N. Farsad, H. B. Yılmaz, A. Eckford, C.-B. Chae, and W. Guo, “A Comprehensive Survey of Recent Advancements in Molecular Communication,” IEEE Communications Surveys & Tutorials , vol. 18, no. 3, pp. 1887–1919, 2016, doi: 10.1109/COMST.2016.2527741 .
- [17]
-
B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell , . Garland Science, 2008, ISBN-13: 978-0815341062 .
- [18]
-
W. C. Agosta, Chemical Communication: The Language of Pheromones , . Scientific American Library, 1992, ix, 179 p. : ISBN-13: 978-0716750369 .
- [19]
-
A. W. Eckford, “Nanoscale Communication with Brownian Motion,” in Annual Conference on Information Sciences and Systems (CISS) , doi: 10.1109/CISS.2007.4298292 , IEEE, 2007, pp. 160–165.
- [20]
-
C. O. Brant, K. Li, N. S. Johnson, and W. Li, “A Pheromone Outweighs Temperature in Influencing Migration of Sea Lamprey,” Royal Society open science , vol. 2, no. 5, p. 150 009, 2015, doi: 10.1098/rsos.150009 .
- [21]
-
T. Nakano, T. Suda, M. Moore, R. Egashira, A. Enomoto, and K. Arima, “Molecular Communication for Nanomachines Using Intercellular Calcium Signaling,” in IEEE Conference on Nanotechnology , IEEE, 2005, pp. 478–481.
- [22]
-
E. Gul, B. Atakan, and O. B. Akan, “NanoNS: A Nanoscale Network Simulator Framework for Molecular Communications,” Nano Communication Networks , vol. 1, no. 2, pp. 138–156, 2010, doi: 10.1016/j.nancom.2010.08.003 .
- [23]
-
M. S. Leeson and M. D. Higgins, “Forward Error Correction for Molecular Communications,” Nano Communication Networks , vol. 3, no. 3, pp. 161–167, 2012, doi: 10.1016/j.nancom.2012.09.001 .
- [24]
-
B.- H. Koo, C. Lee, H. B. Yılmaz, N. Farsad, A. Eckford, and C.-B. Chae, “Molecular MIMO: from Theory to Prototype,” IEEE Journal on Selected Areas in Communications , vol. 34, no. 3, pp. 600–614, 2016, doi: 10.1109/JSAC.2016.2525538 .
- [25]
-
S. Giannoukos, A. Marshall, S. Taylor, and J. Smith, “Molecular Communication over Gas Stream Channels using Portable Mass Spectrometry,” Journal of The American Society for Mass Spectrometry , vol. 28, no. 11, pp. 2371–2383, 2017, doi: 10.1007/s13361-017-1752-6 .
- [26]
-
L. Felicetti, S. S. Assaf, M. Femminella, G. Reali, E. Alarcon, and J. Sole-Pareta, “The Molecular Communications Markup Language (MolComML),” Nano communication networks , vol. 16, pp. 12–25, 2018, doi: 10.1016/j.nancom.2018.03.001 .
- [27]
-
L. Grebenstein et al., “Biological Optical-to-Chemical Signal Conversion Interface: A Small-Scale Modulator for Molecular Communications,” in International Conference on Nanoscale Computing and Communication (NANOCOM) , doi: 10.1145/3233188.3233203 , Reykjavik, Iceland: ACM, 2018, pp. 1–6,
isbn : 978-1-4503-5711-1.doi : 10.1145/3233188.3233203 . [Online]. Available: http://doi.acm.org/10.1145/3233188.3233203 . - [28]
-
B. Alberts et al., Essential Cell Biology , . Garland Publishing, 2009, ISBN-13: 978-0815341307 .
- [29]
-
E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems (Cambridge Series in Chemical Engineering) , . Cambridge University Press, 2009, ISBN-13: 978-0521871211 .
- [30]
-
B. A. Bilgin, E. Dinc, and O. B. Akan, “Dna-based Molecular Communications,” IEEE Access , vol. 6, pp. 73 119–73 129, 2018, doi: 10.1109/ACCESS.2018.2882555 .
- [31]
-
S. Shah, A. Raghavachari, C. Lo, and R. Marculescu, “Molecular communication with dna cellular storage system,” in Proceedings of the 4th ACM International Conference on Nanoscale Computing and Communication , doi: 10.1145/3109453.3109467 , 2017, pp. 1–6.
- [32]
-
L. P. Giné and I. F. Akyıldız, “Molecular Communication Options for Long Range Nanonetworks,” Computer Networks , vol. 53, no. 16, pp. 2753–2766, 2009, doi: 10.1016/j.comnet.2009.08.001 .
- [33]
-
M. Stengl, “Pheromone Transduction in Moths,” Frontiers in Cellular Neuroscience , vol. 4, p. 133, 2010, doi: 10.3389/fncel.2010.00133 .
- [34]
-
R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics , The New Millennium. Basic books, 2011, vol. 1, ISBN-13: 978-0465023820 .
- [35]
-
W. Hundsdorfer and J. G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations , . Springer Science & Business Media, 2013, vol. 33, ISBN-13: 978-3540034407 .
- [36]
-
G. Csanady, Turbulent Diffusion in the Environment , . Springer Netherlands, 1973, vol. 3, ISBN-13: 978-9401025270 .
- [37]
-
T. Nakano, T. Suda, T. Koujin, T. Haraguchi, and Y. Hiraoka, “Molecular Communication Through Gap Junction Channels: System Design, Experiments and Modeling,” in Bio-Inspired Models of Network, Information and Computing Systems (BIMNICS) , doi: 10.1109/BIMNICS.2007.4610100 , IEEE, 2007, pp. 139–146.
- [38]
-
Y. Chahibi, I. F. Akyıldız, and I. Balasingham, “Propagation Modeling and Analysis of Molecular Motors in Molecular Communication,” IEEE Transactions on NanoBioscience , vol. 15, no. 8, pp. 917–927, 2016, doi: 10.1109/TNB.2016.2620439 .
- [39]
-
N. Farsad, W. Guo, and A. W. Eckford, “Tabletop Molecular Communication: Text Messages Through Chemical Signals,” PLoS ONE , vol. 8, no. 12, e82935, 2013, doi: 10.1371/journal.pone.0082935 .
- [40]
-
S. Basu, Y. Gerchman, C. H. Collins, F. H. Arnold, and R. Weiss, “A Synthetic Multicellular System for Programmed Pattern Formation,” Nature , vol. 434, no. 7037, p. 1130, 2005, doi: 10.1038/nature03461 .
- [41]
-
C. Ming-Tang and R. Weiss, “Artificial Cell-Cell Communication in Yeast
Saccharomyces Cerevisiae Using Signaling Elements fromArabidopsis Thaliana ,” Nature Biotechnology , vol. 23, no. 12, p. 1551, 2005, doi: 10.1038/nbt1162 . - [42]
-
L. You, R. S. Cox III, R. Weiss, and F. H. Arnold, “Programmed Population Control by Cell-Cell Communication and Regulated Killing,” Nature , vol. 428, no. 6985, p. 868, 2004, doi: 10.1038/nature02491 .
- [43]
-
D. Harel, L. Carmel, and D. Lancet, “Towards an Odor Communication System,” Computational Biology and Chemistry , vol. 27, no. 2, pp. 121–133, 2003, doi: 10.1016/S1476-9271(02)00092-0 .
- [44]
-
M. Mukai et al., “Propagation and Amplification of Molecular Information Using a Photoresponsive Molecular Switch,” Supramolecular Chemistry , vol. 21, no. 3-4, pp. 284–291, 2009, doi: 10.1080/10610270802468439 .
- [45]
-
Y. Sasaki et al., “A Nanosensory Device Fabricated on a Liposome for Detection of Chemical Signals,” Biotechnology and Bioengineering , vol. 105, no. 1, pp. 37–43, 2010, doi: 10.1002/bit.22521 .
- [46]
-
D. T. McGuiness, A Marshall, S Taylor, and S Giannoukos, “Asymmetrical Inter-Symbol Interference in Macro-Scale Molecular Communications,” in International Conference on Nanoscale Computing and Communication (NANOCOM) , doi: 10.1145/3233188.3233194 , ACM, 2018, pp. 1–6.
- [47]
-
S. Giannoukos, D. T. McGuiness, A. Marshall, J. Smith, and S. Taylor, “a Chemical Alphabet for Macromolecular Communications,” Analytical Chemistry , vol. 90, no. 12, pp. 7739 –7746, 2018, doi: 10.1021/acs.analchem.8b01716 .
- [48]
-
D. Hymel and B. R. Peterson, “Synthetic Cell Surface Receptors for Delivery of Therapeutics and Probes,” Advanced Drug Delivery Reviews , vol. 64, no. 9, pp. 797–810, 2012, doi: 10.1016/j.addr.2012.02.007 .
- [49]
-
H. Shankaran, H. Resat, and H. S. Wiley, “Cell Surface Receptors for Signal Transduction and Ligand Transport: A Design Principles Study,” PLoS Computational Biology , vol. 3, no. 6, e101, 2007, doi: 10.1371/journal.pcbi.0030101 .
- [50]
-
M. Cole et al., “Biomimetic Insect Infochemical Communication System,” in IEEE SENSORS , doi: 10.1109/ICSENS.2009.5398416 , IEEE, 2009, pp. 1358–1361.
- [51]
-
T. D. Wyatt, Pheromones and Animal Behaviour: Communication by Smell and Taste , . Cambridge university press, 2009, ISBN-13: 978-0511615061 .
- [52]
-
G. M. Patel, G. C. Patel, R. B. Patel, J. K. Patel, and M. Patel, “Nanorobot: A Versatile Tool in Nanomedicine,” Journal of Drug Targeting , vol. 14, no. 2, pp. 63–67, 2006, doi: 10.1080/10611860600612862 .
- [53]
-
A Murshid and J. Presley, “ER-to-Golgi Transport and Cytoskeletal Interactions in Animal Cells,” Cellular and Molecular Life Sciences , vol. 61, no. 2, pp. 133–145, 2004, doi: 10.1007/s00018-003-3352-9 .
- [54]
-
H. C. Berg and D. A. Brown, “Chemotaxis in
Escherichia coli Analysed by Three-Dimensional Tracking,” Nature , vol. 239, no. 5374, pp. 500–504, 1972, doi: 10.1038/239500a0 . - [55]
-
S. Qiu, W. Haselmayr, B. Li, C. Zhao, and W. Guo, “Bacterial Relay for Energy–Efficient Molecular Communications,” IEEE Transactions on NanoBioscience , vol. 16, no. 7, pp. 555 –562, 2017, doi: 10.1109/TNB.2017.2741669 .
- [56]
-
F. Bogazzi et al., “Thyroid Vascularity and Blood Flow are not Dependent on Serum Thyroid Hormone Levels: Studies in Vivo by Color Flow Doppler Sonography,” European Journal of Endocrinology , vol. 140, no. 5, pp. 452–456, 1999, doi: 10.1530/eje.0.1400452 .
- [57]
-
Y. Hiraoka et al., “A Cell-Based Molecular Communication Network,” in Bio-Inspired Models of Network, Information and Computing Systems , doi: 10.1109/BIMNICS.2006.361807 , 2006, pp. 1–1.
doi : 10.1109/BIMNICS.2006.361807 . - [58]
-
M. Heil and R. Karban, “Explaining Evolution of Plant Communication by Airborne Signals,” Trends in Ecology & Evolution , vol. 25, no. 3, pp. 137–144, 2010, doi: 10.1016/j.tree.2009.09.010 .
- [59]
-
D. Demiray et al., “DIRECT: A Model for Molecular Communication Nanonetworks Based on Discrete Entities,” Nano Communication Networks , vol. 4, no. 4, pp. 181–188, 2013, doi: 10.1016/j.nancom.2013.08.004 .
- [60]
-
R. K. Vander Meer, M. D. Breed, K. E. Espelie, and M. L. Winston, Pheromone Communication in Social Insects: Ants, Wasps, Bees and Termites (Westview Studies in Insect Biology) , . Westview Press, 1997, ISBN-13: 978-0813389769 .
- [61]
-
T. D. Wyatt, “Fifty Years of Pheromones,” Nature , vol. 457, no. 7227, pp. 262–263, 2009, doi: 10.1038/457262a .
- [62]
-
F. Stajano, N. Hoult, I. Wassell, P. Bennett, C. Middleton, and K. Soga, “Smart Bridges, Smart Tunnels: Transforming Wireless Sensor Networks from Research Prototypes into Robust Engineering Infrastructure,” Ad Hoc Networks , vol. 8, no. 8, pp. 872–888, 2010, doi: 10.1016/j.adhoc.2010.04.002 .
- [63]
-
P. Couvreur and C. Vauthier, “Nanotechnology: Intelligent Design to Treat Complex Disease,” Pharmaceutical Research , vol. 23, no. 7, pp. 1417–1450, 2006, doi: 10.1007/s11095-006-0284-8 .
- [64]
-
A. E. Forooshani, S. Bashir, D. G. Michelson, and S. Noghanian, “A Survey of Wireless Communications and Propagation Modeling in Underground Mines,” IEEE Communications Surveys & Tutorials , vol. 15, no. 4, pp. 1524–1545, 2013, doi: 10.1109/SURV.2013.031413.00130 .
- [65]
-
O. Veiseh, J. W. Gunn, and M. Zhang, “Design and Fabrication of Magnetic Nanoparticles for Targeted Drug Delivery and Imaging,” Advanced Drug Delivery Reviews , vol. 62, no. 3, pp. 284–304, 2010, doi: 10.1016/j.addr.2009.11.002 .
- [66]
-
D. T. Mcguiness, V. Selis, and A. Marshall, “Molecular-Based Nano-Communication Network: A Ring Topology Nano-Bots for In-Vivo Drug Delivery Systems,” IEEE Access , vol. 7, pp. 12 901–12 913, 2019, doi: 10.1109/ACCESS.2019.2892816 ,
issn : 2169-3536.doi : 10.1109/ACCESS.2019.2892816 . - [67]
-
S. P. Leary, C. Y. Liu, and M. L. Apuzzo, “Toward the Emergence of Nanoneurosurgery: Part IIINanomedicine: Targeted Nanotherapy, Nanosurgery, and Progress Toward the Realization of Nanoneurosurgery,” Neurosurgery , vol. 58, no. 6, pp. 1009–1026, 2006, doi: 10.1227/01.NEU.0000217016.79256.16 .
- [68]
-
R. A. Russell, “An Odour Sensing Robot Draws Inspiration from the Insect World,” in International Conference on Bioelectromagnetism (ICBEM) , doi: 10.1109/ICBEM.1998.666389 , IEEE, 1998, pp. 49–50.
- [69]
-
S Kazadi, R. Goodman, D Tsikata, D Green, and H Lin, “an Autonomous Water Vapor Plume Tracking Robot using Passive Resistive Polymer Sensors,” Autonomous Robots , vol. 9, no. 2, pp. 175–188, 2000, doi: 10.1023/A:1008970418316 .
- [70]
-
H. Ishida, T. Nakamoto, T. Moriizumi, T. Kikas, and J. Janata, “Plume-Tracking Robots: A New Application of Chemical Sensors,” The Biological Bulletin , vol. 200, no. 2, pp. 222–226, 2001, doi: 10.2307/1543320 .
- [71]
-
A. Lilienthal, A. Zell, M. Wandel, and U. Weimar, “Sensing Odour Sources in Indoor Environments without a Constant Airflow by a Mobile Robot,” in International Conference on Robotics and Automation (ICRA) , doi: 10.1109/ROBOT.2001.933243 , IEEE, vol. 4, 2001, pp. 4005–4010.
- [72]
-
S. Larionova, N. Almeida, L. Marques, and A. T. de Almeida, “Olfactory Coordinated Area Coverage,” Autonomous Robots , vol. 20, no. 3, pp. 251–260, 2006, doi: 10.1007/s10514-006-7099-7 .
- [73]
-
W. Li, J. A. Farrell, S. Pang, and R. M. Arrieta, “Moth-Inspired Chemical Plume Tracing on an Autonomous Underwater Vehicle,” IEEE Transactions on Robotics , vol. 22, no. 2, pp. 292–307, 2006, doi: 10.1109/TRO.2006.870627 .
- [74]
-
P. Sousa, L. Marques, and A. T. de Almeida, “Toward Chemical-Trail Following Robots,” in International Conference on Machine Learning and Applications (ICMLA) , doi: 10.1109/ICMLA.2008.133 , IEEE, 2008, pp. 489–494.
- [75]
-
D. Martinez, O. Rochel, and E. Hugues, “A Biomimetic Robot For Tracking Specific Odors in Turbulent Plumes,” Autonomous Robots , vol. 20, no. 3, pp. 185–195, 2006, doi: 10.1007/s10514-006-7157-1 .
- [76]
-
A. D. C. de Albornoz, A. B. Rodríguez, A. L. Lopez, and A. R. G. Ramirez, “A Microcontroller-Based Mobile Robotic Platform for Odor Detection,” in ISSNIP Biosignals and Biorobotics Conference: Biosignals and Robotics for Better and Safer Living (BRC) , doi: 10.1109/BRC.2012.6222183 , IEEE, 2012, pp. 1–6.
- [77]
-
A. Cavalcanti, T. Hogg, B. Shirinzadeh, and H. C. Liaw, “Nanorobot Communication Techniques: A Comprehensive Tutorial,” in International Conference on Control, Automation, Robotics and Vision (ICARCV) , doi: 10.1109/ICARCV.2006.345457 , IEEE, 2006, pp. 1–6.
- [78]
-
G. Von Maltzahn et al., “Nanoparticles that Communicate
in vivo to Amplify Tumour Targeting,” Nature materials , vol. 10, no. 7, p. 545, 2011, doi: 10.1038/nmat3049 . - [79]
-
Y. Kuwana, S. Nagasawa, I. Shimoyama, and R. Kanzaki, “Synthesis of the Pheromone-Oriented Behaviour of Silkworm Moths by a Mobile Robot with Moth Antennae as Pheromone Sensors,” Biosensors and Bioelectronics , vol. 14, no. 2, pp. 195–202, 1999, doi: 10.1016/S0956-5663(98)00106-7 .
- [80]
-
A. H. Purnamadjaja and R. A. Russell, “Pheromone Communication in a Robot Swarm: Necrophoric Bee Behaviour and its Replication,” Robotica , vol. 23, no. 6, pp. 731–742, 2005, doi: 10.1017/S0263574704001225 .
- [81]
-
A. H. Purnamadjaja and R. A. Russell, “Bi-directional Pheromone Communication Between Robots,” Robotica , vol. 28, no. 1, pp. 69–79, 2010, doi: 10.1017/S0263574709005591 .
- [82]
-
T. M. Cover and J. A. Thomas, Elements of Information Theory , . Wiley-Blackwell, 2006, ISBN-13: 978-0471241959 .
- [83]
-
A. Gohari, M. Mirmohseni, and M. Nasiri-Kenari, “Information Theory of Molecular Communication: Directions and Challenges,” IEEE Transactions on Molecular, Biological and Multi-Scale Communications , vol. 2, no. 2, pp. 120–142, 2016, doi: 10.1109/TMBMC.2016.2640284 .
- [84]
-
V. Jamali, A. Ahmadzadeh, N. Farsad, and R. Schober, “SCW Codes for Optimal CSI-free Detection in Diffusive Molecular Communications,” in International Symposium on Information Theory (ISIT) , doi: 10.1109/ISIT.2017.8007118 , IEEE, 2017, pp. 3190–3194.
- [85]
-
C. E. Shannon, “A Mathematical Theory of Communication,” Bell system technical journal , vol. 27, no. 3, pp. 379–423, 1948, doi: 10.1002/j.1538-7305.1948.tb01338.x .
- [86]
-
S. Verdú and T. S. Han, “A General Formula for Channel Capacity,” IEEE Transactions on Information Theory , vol. 40, no. 4, pp. 1147–1157, 1994, doi: 10.1109/18.335960 .
- [87]
-
R. Blahut, “Computation of Channel Capacity and Rate-Distortion Functions,” IEEE Transactions on Information Theory , vol. 18, no. 4, pp. 460–473, 1972, doi: 10.1109/TIT.1972.1054855 .
- [88]
-
S. Arimoto, “An Algorithm for Computing the Capacity of Arbitrary Discrete Memoryless Channels,” IEEE Transactions on Information Theory , vol. 18, no. 1, pp. 14–20, 1972, doi: 10.1109/TIT.1972.1054753 .
- [89]
-
R. Gallager, Information Theory and Reliable Communication . Springer, 1970, vol. 1, ISBN-13: 978-3211811450 .
- [90]
-
M. Turan, M. Ş. Kuran, H. B. Yılmaz, I. Demirkol, and T. Tuğcu, “Channel Model of Molecular Communication via Diffusion in a Vessel-Like Environment Considering a Partially Covering Receiver,” in International Black Sea Conference on Communications and Networking (BlackSeaCom) , doi: 10.1109/BlackSeaCom.2018.8433703 , IEEE, 2018, pp. 1–5.
doi : 10.1109/BlackSeaCom.2018.8433703 . - [91]
-
S. M. Mustam, S. K. Syed Yusof, and S. Nejatian, “Multilayer Diffusion-based Molecular Communication,” Transactions on Emerging Telecommunications Technologies , vol. 28, no. 1, pp. 2161–3915, 2017, doi: 10.1002/ett.2935 .
- [92]
-
Y. Murin, N. Farsad, M. Chowdhury, and A. Goldsmith, “Exploiting Diversity in One-Shot Molecular Timing Channels via Order Statistics,” IEEE Transactions on Molecular, Biological and Multi-Scale Communications , vol. 4, no. 1, pp. 14–26, 2018, doi: 10.1109/TMBMC.2018.2889644 .
- [93]
-
A. Ahmadzadeh, V. Jamali, and R. Schober, “Statistical Analysis of Time-Variant Channels in Diffusive Mobile Molecular Communications,” in Global Communications Conference (GLOBECOM) , doi: 10.1109/GLOCOM.2017.8254237 , IEEE, 2017, pp. 1–7.
- [94]
-
Y. Sun, “Channel modelling of blood capillary-based molecular communication,” Ph.D. dissertation, University of Essex, 2018. [Online]. Available: \url{http://repository.essex.ac.uk/22451/} .
- [95]
-
H. Ramezani, T. Khan, and O. B. Akan, “Information Theoretical Analysis of Synaptic Communication for Nanonetworks,” in Conference on Computer Communications (INFOCOM) , doi: 10.1109/INFOCOM.2018.8486255 , IEEE, 2018, pp. 2330–2338.
- [96]
-
J. W. Kwack, H. B. Yılmaz, N. Farsad, C.-B. Chae, and A. Goldsmith, “Two Way Molecular Communications,” in International Conference on Nanoscale Computing and Communication (NANOCOM) , doi: 10.1145/3233188.3233199 , ACM, 2018, pp. 1–5.
- [97]
-
H. G. Bafghi, A. Gohari, M. Mirmohseni, G. Aminian, and M. Nasiri-Kenari, “Diffusion-Based Molecular Communication with Limited Molecule Production Rate,” IEEE Transactions on Molecular, Biological and Multi-Scale Communications , vol. 4, no. 2, pp. 61–72, 2018, doi: 10.1109/TMBMC.2019.2895815 .
- [98]
-
L. Galluccio, A. Lombardo, G. Morabito, S. Palazzo, C. Panarello, and G. Schembra, “Capacity of a Binary Droplet-based Microfluidic Channel with Memory and Anticipation for Flow-induced Molecular Communications,” IEEE Transactions on Communications , vol. 66, no. 1, pp. 194–208, 2018, doi: 10.1109/TCOMM.2017.2755649 .
- [99]
-
N. Farsad, C. Rose, M. Médard, and A. Goldsmith, “Capacity of Molecular Channels with Imperfect Particle-intensity Modulation and Detection,” in International Symposium on Information Theory (ISIT) , doi: 10.1109/ISIT.2017.8006973 , IEEE, 2017, pp. 2468–2472.
- [100]
-
A. Etemadi, P. Azmi, H. Arjmandi, and N. Mokari, “Compound Poisson Noise Sources in Diffusion-Based Molecular Communication,” IEEE Transactions on Communications , vol. 67, no. 6, pp. 4104–4116, 2019, doi: 10.1109/TCOMM.2019.2899092 .
- [101]
-
K. Srinivas, A. W. Eckford, and R. S. Adve, “Molecular Communication in Fluid Media: The Additive Inverse Gaussian Noise Channel,” IEEE Transactions on Information Theory , vol. 58, no. 7, pp. 4678–4692, 2012, doi: 10.1109/TIT.2012.2193554 .
- [102]
-
R. G. Thorne, S. Hrabětová, and C. Nicholson, “Diffusion of Epidermal Growth Factor in Rat Brain Extracellular Space Measured by Integrative Optical Imaging,” Journal of Neurophysiology , vol. 92, no. 6, pp. 3471–3481, 2004, doi: 10.1152/jn.00352.2004 .
- [103]
-
C. Mucignat-Caretta, Neurobiology of Chemical Communication (Frontiers in Neuroscience) , . CRC Press, 2014, ISBN-13: 978-1466553415 .
- [104]
-
J. Sallée, K. Speer, R Morrow, and R. Lumpkin, “an Estimate of Lagrangian Eddy Statistics and Diffusion in the Mixed Layer of the Southern Ocean,” Journal of Marine Research , vol. 66, no. 4, pp. 441–463, 2008, doi: 10.1357/002224008787157458 .
- [105]
-
P. G. Black, S. J. Buchan, and R. L. Cohen, “The Tropical Cyclone Eyewall Mesovortex: A Physical Mechanism Explaining Extreme Peak Gust Occurrence in TC Olivia, 4 April 1996 on Barrow Island, Australia,” in Offshore Technology Conference , doi: 10.4043/10792-MS , Offshore Technology Conference, 1999, pp. 1–5.
- [106]
-
B. Steigerwald, “Jupiter’s little red spot growing stronger,” NASA , 2007, [Retrieved February 8, 2019] https://www.nasa.gov/centers/goddard/news/topstory/2006/little_red_spot.html .
- [107]
-
T. A. Schroer and M. P. Sheetz, “Two Activators of Microtubule-based Vesicle Transport,” The Journal of Cell Biology , vol. 115, no. 5, pp. 1309–1318, 1991, doi: 10.1083/jcb.115.5.1309 .
- [108]
-
E. Barta, S. Sideman, and J. B. Bassingthwaighte, “Facilitated Diffusion and Membrane Permeation of Fatty Acid in Albumin Solutions,” Annals of Biomedical Engineering , vol. 28, no. 3, pp. 331–345, 2000, doi: 10.1114/1.274 .
- [109]
-
M. Demir and H. Salman, “Bacterial Thermotaxis by Speed Modulation,” Biophysical Journal , vol. 103, no. 8, pp. 1683–1690, 2012, doi: 10.1016/j.bpj.2012.09.005 .
- [110]
-
M. J. Sanderson, “Intercellular Waves of Communication,” Physiology , vol. 11, no. 6, pp. 262–269, 1996, doi: 10.1152/physiologyonline.1996.11.6.262 .
- [111]
-
M. Delling, P. G. DeCaen, J. F. Doerner, S. Febvay, and D. E. Clapham, “Primary Cilia are Specialized Calcium Signalling Organelles,” Nature , vol. 504, no. 7479, p. 311, 2013, doi: 10.1038/nature12833 .
- [112]
-
M. B. Elowitz, M. G. Surette, P.-E. Wolf, J. B. Stock, and S. Leibler, “Protein Mobility in the Cytoplasm of ,” Journal of Bacteriology , vol. 181, no. 1, pp. 197–203, 1999, PubMeD PMID: 9864330 .
- [113]
-
K. Weiß, A. Neef, Q. Van, S. Kramer, I. Gregor, and J. Enderlein, “Quantifying the Diffusion of Membrane Proteins and Peptides in Black Lipid Membranes with 2-Focus Fluorescence Correlation Spectroscopy,” Biophysical Journal , vol. 105, no. 2, pp. 455–462, 2013, doi: 10.1016/j.bpj.2013.06.004 .
- [114]
-
J. M. Berg, J. L. Tymoczko, J. Gregory J. Gatto, and L. Stryer, Biochemistry , . WH Freeman, 2002, ISBN-13: 978-1464126109 .
- [115]
-
S. Kadloor, R. S. Adve, and A. W. Eckford, “Molecular Communication using Brownian Motion with Drift,” IEEE Transactions on NanoBioscience , vol. 11, no. 2, pp. 89–99, 2012, doi: 10.1109/TNB.2012.2190546 .
- [116]
-
T Pichugina et al., “A Diffusion Model for the Coordination of DNA Replication in
Schizosaccharomyces pombe ,” Scientific Reports , vol. 6, p. 18 757, 2016, doi: 10.1038/srep18757 . - [117]
-
H. C. Berg, Random Walks in Biology , . Princeton University Press, 1993, ISBN-13: 978-0691000640 .
- [118]
-
J. T. Edward, “Molecular Volumes and the Stokes-Einstein Equation,” Journal of Chemical Education , vol. 47, no. 4, p. 261, 1970, doi: 10.1021/ed047p261 .
- [119]
-
N. Kosov, “Elementary Kinetic Theory of Diffusion in Gases,” Journal of Engineering Physics , vol. 42, no. 2, pp. 181–192, 1982, doi: 10.1007/BF00827267 .
- [120]
-
D. Ben-Avraham and S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems , . Cambridge university press, 2005, ISBN-13: 978-0521617208 .
- [121]
-
P. S. Nobel, Physicochemical & Environmental Plant Physiology , . Academic press, 1999, ISBN-13: 978-0123741431 .
- [122]
-
D. Voet, J. G. Voet, and C. W. Pratt, Fundamentals of Biochemistry: Life at the Molecular Level , . John Wiley & Sons, 2012, ISBN-13: 978-1118129180 .
- [123]
-
S. M. Clifford and D. Hillel, “Knudsen Diffusion: The Effect of Small Pore Size and Low Gas Pressure on Gaseous Transport in Soil,” Soil Science , vol. 141, no. 4, pp. 289–297, 1986, doi: 10.1097/00010694-198604000-00006 .
- [124]
-
S.- J. Sheu, “Some Estimates of the Transition Density of a Nondegenerate Diffusion Markov Process,” The Annals of Probability , vol. 19, no. 2, pp. 538–561, 1991, doi: 10.1214/aop/1176990440 .
- [125]
-
S. M. Ross, Stochastic Processes , . Wiley, 1995, ISBN-13: 978-0471120629 .
- [126]
-
J. Berthier and P. Silberzan, Microfluidics for Biotechnology , . Artech House, 2009, ISBN-13: 978-1596934436 .
- [127]
-
B. Øksendal, Stochastic Differential Equations: an Introduction with Applications (Universitext) , . Springer-Verlag Berlin Heidelberg, 2014, ISBN-13: 978-3540047582 .
- [128]
-
D. S. Lemons and A. Gythiel, “Paul Langevins 1908 Paper on the Theory of Brownian Motion[Sur la Théorie du Mouvement Brownien, cr acad. sci.(paris) 146, 530–533 (1908)],” American Journal of Physics , vol. 65, no. 11, pp. 1079–1081, 1997, doi: 10.1119/1.18725 .
- [129]
-
C. T. Chou, “Extended Master Equation Models for Molecular Communication Networks,” IEEE Transactions on NanoBioscience , vol. 12, no. 2, pp. 79–92, 2013, doi: 10.1109/TNB.2013.2237785 .
- [130]
-
M. Pierobon and I. F. Akyıldız, “Noise Analysis in Ligand-Binding Reception for Molecular Communication in Nanonetworks,” IEEE Transactions on Signal Processing , vol. 59, no. 9, pp. 4168–4182, 2011, doi: 10.1109/TSP.2011.2159497 .
- [131]
-
M. Pierobon and I. F. Akyıldız, “Capacity of a Diffusion-Based Molecular Communication System with Channel Memory and Molecular Noise,” IEEE Transactions on Information Theory , vol. 59, no. 2, pp. 942–954, 2013, doi: 10.1109/TIT.2012.2219496 .
- [132]
-
F. Zabini, “Spatially Distributed Molecular Communications: An Asynchronous Stochastic Model,” IEEE Communications Letters , vol. 22, no. 7, pp. 1326–1329, 2018, doi: 10.1109/LCOMM.2018.2826018 .
- [133]
-
J. Crank, The Mathematics of Diffusion (Oxford Science Publications) , . Oxford University Press, 1979, ISBN-13: 978-0198534112 .
- [134]
-
I. M. Gel’fand and G. E. Shilov, Generalized Functions, Volume 2: Spaces of Fundamental and Generalized Functions , . AMS Chelsea Publishing, 1968, vol. 378, ISBN-13: 978-1-4704-2659-0 .
- [135]
-
S. Redner, a Guide to First-Passage Processes . Cambridge University Press, 2001, ISBN-13: 978-0521652483 .
- [136]
-
H. B. Yılmaz, A. C. Heren, T. Tuğcu, and C.-B. Chae, “Three-dimensional Channel Characteristics for Molecular Communications with an Absorbing Receiver,” IEEE Communications Letters , vol. 18, no. 6, pp. 929–932, 2014, doi: 10.1109/LCOMM.2014.2320917 .
- [137]
-
I. Llatser, E. Alarcón, and M. Pierobony, “Diffusion-based Channel Characterization in Molecular Nanonetworks,” in Conference on Computer Communications Workshops (INFOCOM WKSHPS) , doi: 10.1109/INFCOMW.2011.5928858 , IEEE, 2011, pp. 467–472.
- [138]
-
L. P. Kadanoff, Statistical Physics: Statics, Dynamics and Renormalization , . World Scientific Publishing Co Inc., 2000, ISBN-13: 978-9810237585 .
- [139]
-
B. Atakan and O. B. Akan, “Deterministic Capacity of Information Flow in Molecular Nanonetworks,” Nano Communication Networks , vol. 1, no. 1, pp. 31–42, 2010, doi: 10.1016/j.nancom.2010.03.003 .
- [140]
-
L. S. Meng, P. C. Yeh, K. C. Chen, and I. F. Akyıldız, “MIMO Communications Based on Molecular Diffusion,” in Global Communications Conference (GLOBECOM) , doi: 10.1109/GLOCOM.2012.6503976 , IEEE, 2012, pp. 5380–5385.
- [141]
-
R. M. Ziff, S. N. Majumdar, and A. Comtet, “Capture of Particles Undergoing Discrete Random Walks,” The Journal of Chemical Physics , vol. 130, no. 20, p. 204 104, 2009, doi: 10.1063/1.3137062 .
- [142]
-
S. Wang, W. Guo, S. Qiu, and M. D. McDonnell, “Performance of Macro-scale Molecular Communications with Sensor Cleanse Time,” in International Conference on Telecommunications (ICT) , doi: 10.1109/ICT.2014.6845140 , IEEE, 2014, pp. 363–368.
- [143]
-
G. B. Thomas, M. D. Weir, J. Hass, and F. R. Giordano, Thomas’ Calculus , . Pearson, 2017, ISBN-13: 978-0134438986 .
- [144]
-
J. Pedlosky, Geophysical Fluid Dynamics , . Springer-Verlag New York, 1987, ISBN-13: 978-0387963877 .
- [145]
-
S. Chandrasekhar, “Stochastic Problems in Physics and Astronomy,” Reviews of Modern Physics , vol. 15, no. 1, p. 1, 1943, doi: 10.1103/RevModPhys.15.1 .
- [146]
-
T. Stocker, Introduction to Climate Modelling , . Springer-Verlag Berlin Heidelberg, 2011, ISBN-13: 978-3-642-00772-9 .
- [147]
-
O. K. Jensen and B. A. Finlayson, “Solution of the Transport Equations using a Moving Coordinate System,” Advances in Water Resources , vol. 3, no. 1, pp. 9–18, 1980, doi: 10.1016/0309-1708(80)90014-7 .
- [148]
-
J.- S. Chen, Y.- H. Liu, C.-P. Liang, C.-W. Liu, and C.-W. Lin, “Exact Analytical Solutions for Two-dimensional Advection–Dispersion Equation in Cylindrical Coordinates Subject to Third-type Inlet Boundary Condition,” Advances in Water Resources , vol. 34, no. 3, pp. 365–374, 2011, doi: 10.1016/j.advwatres.2010.12.008 .
- [149]
-
A. D. Poularikas, Transforms and Applications Handbook (Electrical Engineering Handbook) , . CRC press, 2010, ISBN-13: 978-1420066524 .
- [150]
-
N. A. Gershenfeld, The Nature of Mathematical Modeling , . Cambridge University Press, 1998, ISBN-13: 978-0521570954 .
- [151]
-
R. Courant and D. Hilbert, Methods of Mathematical Physics: Partial Differential Equations, Volume 2 , . John Wiley & Sons, 2008, ISBN-13: 978-3527617241 .
- [152]
-
M. Zoofaghari and H. Arjmandi, “Diffusive Molecular Communication in Biological Cylindrical Environment,” IEEE Transactions on NanoBioscience , vol. 18, no. 1, pp. 74–83, 2018, doi: 10.1109/TNB.2018.2885051 .
- [153]
-
A. Goel, A. Ridley, and D. S. Bernstein, “Estimation of the Eddy Diffusion Coefficient Using Total Electron Content Data,” in Annual American Control Conference (ACC) , doi: 10.23919/ACC.2018.8431184 , IEEE, 2018, pp. 3298–3303.
- [154]
-
M. M. Karaman and X. J. Zhou, “A Fractional Motion Diffusion Model for a Twice-refocused Spin-Echo Pulse Sequence,” NMR in Biomedicine , e3960, 2018, doi: 10.1002/nbm.3960 .
- [155]
-
Y. Shao, S. Ramachandran, S. Arnold, and G. Ramachandran, “Turbulent Eddy Diffusion Models in Exposure Assessment-determination of the Eddy Diffusion Coefficient,” Journal of Occupational and Environmental Hygiene , vol. 14, no. 3, pp. 195–206, 2017, doi: 10.1080/15459624.2016.1238476 .
- [156]
-
A. Sommerfeld, “Ein beitrag zur hydrodynamischen erklaerung der turbulenten fluessigkeitsbewegungen [ a contribution to the hydrodynamic explanation of the turbulent fluid movements],” Atti del , vol. 4, pp. 116–124, 1908, doi: 10.1098/rspa.1954.0130 .
- [157]
-
G. I. Taylor, “Eddy Motion in the Atmosphere,” Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character , vol. 215, pp. 1–26, 1915, doi: 10.1098/rsta.1915.0001 .
- [158]
-
H. Carslaw and J. Jaeger, Conduction of Heat in Solids (Oxford Science Publications) , . Oxford University Press, 1986, ISBN-13: 978-0198533689 .
- [159]
-
M. Abbaszadeh, H. B. Yılmaz, P. J. Thomas, and W. Guo, “Linearity of Sequential Molecular Signals in Turbulent Diffusion Channels,” in International Conference on Communications (ICC) , doi: 10.1109/ICC.2019.8761812 , 2019, pp. 1–6.
doi : 10.1109/ICC.2019.8761812 . - [160]
-
I. Atthanayake, S. Esfahani, P. Denissenko, I. Guymer, P. J. Thomas, and W. Guo, “Experimental molecular communications in obstacle rich fluids,” in International Conference on Nanoscale Computing and Communication (NANOCOM) , doi: 10.1145/3233188.3233216 , Reykjavik, Iceland: ACM, 2018, pp. 1–2,
isbn : 978-1-4503-5711-1.doi : 10.1145/3233188.3233216 . [Online]. Available: http://doi.acm.org/10.1145/3233188.3233216 . - [161]
-
M. Ş. Kuran, H. B. Yılmaz, T. Tuğcu, and I. F. Akyıldız, “Modulation Techniques for Communication via Diffusion in Nanonetworks,” in International Conference on Communications (ICC) , doi: 10.1109/icc.2011.5962989 , IEEE, 2011, pp. 1–5.
- [162]
-
M. Ş. Kuran, H. B. Yılmaz, T. Tuğcu, and I. F. Akyıldız, “Interference Effects on Modulation Techniques in Diffusion Based Nanonetworks,” Nano Communication Networks , vol. 3, no. 1, pp. 65–73, 2012, doi: 10.1016/j.nancom.2012.01.005 .
- [163]
-
L. Lin, Q. Wu, M. Ma, and H. Yan, “Concentration-Based Demodulation Scheme for Mobile Receiver in Molecular Communication,” Nano Communication Networks , vol. 20, pp. 11–19, 2019, doi: 10.1016/j.nancom.2019.01.003 .
- [164]
-
N.- R. Kim and C.-B. Chae, “Novel Modulation Techniques using Isomers as Messenger Molecules for Nano Communication Networks via Diffusion,” IEEE Journal on Selected Areas in Communications , vol. 31, no. 12, pp. 847–856, 2013, doi: 10.1109/JSAC.2013.SUP2.12130017 .
- [165]
-
G. Ardelt, C. Külls, and H. Hellbrück, “Towards intrinsic molecular communication using isotopic isomerism,” Open Journal of Internet Of Things (OJIOT) , vol. 4, no. 1, pp. 135–143, 2018.
- [166]
-
M. H. Kabir, S. R. Islam, and K. S. Kwak, “D-MoSK Modulation in Molecular Communications,” IEEE Transactions on NanoBioscience , vol. 14, no. 6, pp. 680–683, 2015, doi: 10.1109/TNB.2015.2436409 .
- [167]
-
R. Mosayebi, A. Gohari, M. Mirmohseni, and M. N. Kenari, “Type Based Sign Modulation for Molecular Communication,” in Iran Workshop on Communication and Information Theory (IWCIT) , doi: 10.1109/IWCIT.2016.7491618 , IEEE, 2016, pp. 1–6.
- [168]
-
R. Mosayebi, A. Gohari, M. Mirmohseni, and M. Nasiri-Kenari, “Type-Based Sign Modulation and its Application for ISI Mitigation in Molecular Communication,” IEEE Transactions on Communications , vol. 66, no. 1, pp. 180–193, 2018, doi: 10.1109/TCOMM.2017.2754492 .
- [169]
-
N. Garralda, I. Llatser, A. Cabellos-Aparicio, E. Alarcón, and M. Pierobon, “Diffusion-based Physical Channel Identification in Molecular Nanonetworks,” Nano Communication Networks , vol. 2, no. 4, pp. 196–204, 2011, doi: 10.1016/j.nancom.2011.07.001 .
- [170]
-
B. Krishnaswamy et al., “Time-Elapse Communication: Bacterial Communication on a Microfluidic Chip,” IEEE Transactions on Communications , vol. 61, no. 12, pp. 5139–5151, 2013, doi: 10.1109/TCOMM.2013.111013.130314 .
- [171]
-
B. Atakan, S. Galmes, and O. B. Akan, “Nanoscale Communication with Molecular Arrays in Nanonetworks,” IEEE Transactions on NanoBioscience , vol. 11, no. 2, pp. 149–160, 2012, doi: 10.1109/TNB.2011.2181862 .
- [172]
-
B. Tepekule, A. E. Pusane, H. B. Yılmaz, and T. Tuğcu, “Energy Efficient ISI Mitigation for Communication via Diffusion,” in International Black Sea Conference on Communications and Networking (BlackSeaCom) , doi: 10.1109/BlackSeaCom.2014.6848999 , IEEE, 2014, pp. 33–37.
- [173]
-
S. Pudasaini, S. Shin, and K. S. Kwak, “Run-length Aware Hybrid Modulation Scheme for Diffusion-based Molecular Communication,” in International Symposium on Communications and Information Technologies (ISCIT) , doi: 10.1109/ISCIT.2014.7011950 , IEEE, 2014, pp. 439–442.
- [174]
-
M. C. Gürsoy, E. Başar, A. E. Pusane, and T. Tuğcu, “Index Modulation for Molecular Communication via Diffusion Systems,” IEEE Transactions on Communications , pp. 1–1, 2019, doi: 10.1109/TCOMM.2019.2898665 ,
issn : 0090-6778.doi : 10.1109/TCOMM.2019.2898665 . - [175]
-
M. B. Miller and B. L. Bassler, “Quorum Sensing in Bacteria,” Annual Reviews in Microbiology , vol. 55, no. 1, pp. 165–199, 2001, doi: 10.1146/annurev.micro.55.1.165 .
- [176]
-
B. C. Akdeniz, A. E. Pusane, and T. Tuğcu, “Position-based Modulation in Molecular Communications,” Nano Communication Networks , vol. 16, pp. 60–68, 2018, doi: 10.1016/j.nancom.2018.01.004 .
- [177]
-
Y.- P. Hsieh, Y.-C. Lee, P.-J. Shih, P.-C. Yeh, and K.-C. Chen, “On the asynchronous Information Embedding for Event-driven Systems in Molecular Communications,” Nano Communication Networks , vol. 4, no. 1, pp. 2–13, 2013, doi: 10.1016/j.nancom.2012.11.001 .
- [178]
-
I. Llatser, A. Cabellos-Aparicio, M. Pierobon, and E. Alarcón, “Detection Techniques for Diffusion-based Molecular Communication,” IEEE Journal on Selected Areas in Communications , vol. 31, no. 12, pp. 726–734, 2013, doi: 10.1109/JSAC.2013.SUP2.1213005 .
- [179]
-
B. C. Akdeniz, A. E. Pusane, and T. Tuğcu, “A Novel Concentration-type Based Modulation in Molecular Communication,” in Signal Processing and Communications Applications Conference (SIU) , doi: 10.1109/SIU.2017.7960355 , IEEE, 2017, pp. 1–4.
- [180]
-
M. J. Moore, T. Suda, and K. Oiwa, “Molecular Communication: Modeling Noise Effects on Information Rate,” IEEE Transactions on NanoBioscience , vol. 8, no. 2, pp. 169–180, 2009, doi: 10.1109/TNB.2009.2025039 .
- [181]
-
M. Pierobon and I. F. Akyıldız, “a Statistical–Physical Model of Interference in Diffusion-Based Molecular Nanonetworks,” IEEE Transactions on Communications , vol. 62, no. 6, pp. 2085–2095, 2014, doi: 10.1109/TCOMM.2014.2314650 .
- [182]
-
G. Aminian, H. Arjmandi, A. Gohari, M. Nasiri-Kenari, and U. Mitra, “Capacity of Diffusion-based Molecular Communication Networks over LTI-Poisson Channels,” IEEE Transactions on Molecular, Biological and Multi-Scale Communications , vol. 1, no. 2, pp. 188–201, 2015, doi: 10.1109/TMBMC.2015.2502858 .
- [183]
-
G. Genç, Y. E. Kara, H. B. Yılmaz, and T. Tuğcu, “ISI-aware Modeling and Achievable Rate Analysis of the Diffusion Channel,” IEEE Communications Letters , vol. 20, no. 9, pp. 1729–1732, 2016, doi: 10.1109/LCOMM.2016.2586069 .
- [184]
-
H. Arjmandi, M. Movahednasab, A. Gohari, M. Mirmohseni, M. Nasiri-Kenari, and F. Fekri, “ISI-avoiding Modulation for Diffusion-based Molecular Communication,” IEEE Transactions on Molecular, Biological and Multi-Scale Communications , vol. 3, no. 1, pp. 48–59, 2017, doi: 10.1109/TMBMC.2016.2640311 .
- [185]
-
A. Noel, K. C. Cheung, and R. Schober, “Improving Receiver Performance of Diffusive Molecular Communication with Enzymes,” IEEE Transactions on NanoBioscience , vol. 13, no. 1, pp. 31–43, 2014, doi: 10.1109/TNB.2013.2295546 .
- [186]
-
M. Ş. Kuran, H. B. Yılmaz, and T. Tuğ cu, “A Tunnel-based Approach for Signal Shaping in Molecular Communication,” in International Conference on Communications Workshops (ICC) , doi: 10.1109/ICCW.2013.6649338 , IEEE, 2013, pp. 776–781.
- [187]
-
A. C. Heren, H. B. Yılmaz, C.-B. Chae, and T. Tuğcu, “Effect of Degradation in Molecular Communication: Impairment or Enhancement?” IEEE Transactions on Molecular, Biological and Multi-Scale Communications , vol. 1, no. 2, pp. 217–229, 2015, doi: 10.1109/TMBMC.2015.2502859 .
- [188]
-
N. Farsad and A. Goldsmith, “a Molecular Communication System using Acids, Bases and Hydrogen Ions,” in International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) , doi: 10.1109/SPAWC.2016.7536834 , 2016, pp. 1–6.
doi : 10.1109/SPAWC.2016.7536834 . - [189]
-
Y. J. Cho, H. B. Yılmaz, W. Guo, and C.-B. Chae, “Effective Inter-symbol Interference Mitigation with a Limited Amount of Enzymes in Molecular Communications,” Transactions on Emerging Telecommunications Technologies , vol. 28, no. 7, e3106, 2017, doi: 10.1002/ett.3106 .
- [190]
-
B. C. Akdeniz, A. E. Pusane, and T. Tuğcu, “Optimal Reception Delay in Diffusion-based Molecular Communication,” IEEE Communications Letters , vol. 22, no. 1, pp. 57–60, 2018, doi: 10.1109/LCOMM.2017.2761337 .
- [191]
-
G. Chang, L. Lin, and H. Yan, “Adaptive Detection and ISI Mitigation for Mobile Molecular Communication,” IEEE Transactions on NanoBioscience , vol. 17, no. 1, pp. 21–35, 2018, doi: 10.1109/TNB.2017.2786229 .
- [192]
-
O. A. Dambri and S. Cherkaoui, “Enhancing Signal Strength and ISI-avoidance of Diffusion-based Molecular Communication,” in International Wireless Communications & Mobile Computing Conference (IWCMC) , doi: 10.1109/IWCMC.2018.8450431 , IEEE, 2018, pp. 1–6.
- [193]
-
H. Arjmandi, A. Gohari, M. N. Kenari, and F. Bateni, “Diffusion-based Nanonetworking: A New Modulation Technique and Performance Analysis,” IEEE Communications Letters , vol. 17, no. 4, pp. 645–648, 2013, doi: 10.1109/LCOMM.2013.021913.122402 .
- [194]
-
Y. Lu, M. D. Higgins, and M. S. Leeson, the use of Error Correction Codes within Molecular Communications Systems . CRC Press, 2018, ISBN-13: 978-1138587984 .
- [195]
-
E. C. Friedberg, “DNA Damage and Repair,” Nature , vol. 421, no. 6921, p. 436, 2003, doi: 10.1038/nature01408 .
- [196]
-
P.- J. Shih, C.-H. Lee, P.-C. Yeh, and K.-C. Chen, “Channel Codes for Reliability Enhancement in Molecular Communication,” IEEE Journal on Selected Areas in Communications , vol. 31, no. 12, pp. 857–867, 2013, doi: 10.1109/JSAC.2013.SUP2.12130018 .
- [197]
-
Y. Lu, X. Wang, M. D. Higgins, A. Noel, N. Neophytou, and M. S. Leeson, “Energy Requirements of Error Correction Codes in Diffusion-based Molecular Communication Systems,” Nano Communication Networks , vol. 11, pp. 24–35, 2017, doi: 10.1016/j.nancom.2016.09.003 .
- [198]
-
P.- Y. Ko, Y.-C. Lee, P.-C. Yeh, C.-h. Lee, and K.-C. Chen, “a New Paradigm for Channel Coding in Diffusion-based Molecular Communications: Molecular Coding Distance Function,” in Global Communications Conference (GLOBECOM), 2012 IEEE , doi: 10.1109/GLOCOM.2012.6503700 , IEEE, 2012, pp. 3748–3753.
- [199]
-
M. S. Leeson and M. D. Higgins, “Error Correction Coding for Molecular Communications,” in International Conference on Communications (ICC) , doi: 10.1109/ICC.2012.6364980 , IEEE, 2012, pp. 6172–6176.
- [200]
-
C. Bai, M. S. Leeson, and M. D. Higgins, “Minimum Energy Channel Codes for Molecular Communications,” IET Electronics Letters , vol. 50, no. 23, pp. 1669–1671, 2014, doi: 10.1049/el.2014.3345 .
- [201]
-
Y. Lu, M. D. Higgins, and M. S. Leeson, “Comparison of Channel Coding Schemes for Molecular Communications Systems,” IEEE Transactions on Communications , vol. 63, no. 11, pp. 3991–4001, 2015, doi: 10.1109/TCOMM.2015.2480752 .
- [202]
-
M. B. Dissanayake, Y. Deng, A. Nallanathan, M. Elkashlan, and U. Mitra, “Interference Mitigation in Large-scale Multiuser Molecular Communication,” IEEE Transactions on Communications , vol. 67, pp. 4088–4103, 2019, doi: 10.1109/TCOMM.2019.2897568 .
- [203]
-
V. Jamali, A. Ahmadzadeh, N. Farsad, and R. Schober, “Constant-composition Codes for Maximum Likelihood Detection without CSI in Diffusive Molecular Communications,” IEEE Transactions on Communications , vol. 66, no. 5, pp. 1981–1995, 2018, doi: 10.1109/TCOMM.2018.2796612 .
- [204]
-
L. Shi and L.-L. Yang, “Error Performance Analysis of Diffusive Molecular Communication Systems with On-Off Keying Modulation,” IEEE Transactions on Molecular, Biological and Multi-Scale Communications , vol. 3, no. 4, pp. 224–238, 2017, doi: 10.1109/TMBMC.2018.2856778 .
- [205]
-
N. Abadi, A. A. Gohari, M. Mirmohseni, and M. Nasiri-Kenari, “Zero-error Codes for Multi-type Molecular Communication in Random Delay Channel,” in 2018 Iran Workshop on Communication and Information Theory (IWCIT) , doi: 10.1109/IWCIT.2018.8405050 , IEEE, 2018, pp. 1–6.
- [206]
-
B. Krishnaswamy and R. Sivakumar, “Amplitude-width Encoding for Error Correction in Bacterial Communication Networks,” in International Conference on Nanoscale Computing and Communication (NANOCOM) , doi: 10.1145/3233188.3233212 , ACM, 2018, p. 25.
- [207]
-
A. O. Kışlal, A. E. Pusane, and T. Tuğcu, “a Comparative Analysis of Channel Coding for Molecular Communication,” in Signal Processing and Communications Applications Conference (SIU) , doi: 10.1109/SIU.2018.8404368 , IEEE, 2018, pp. 1–4.
- [208]
-
R. Chien, “Cyclic Decoding Procedures for Bose-Chaudhuri-Hocquenghem Codes,” IEEE Transactions on Information Theory , vol. 10, no. 4, pp. 357–363, 1964, doi: 10.1109/TIT.1964.1053699 .
- [209]
-
S. B. Wicker and V. K. Bhargava, Reed-Solomon Codes and their Applications , . John Wiley & Sons, 1999, ISBN-13: 978-0780353916 .
- [210]
-
S. R. Islam, F. Ali, H. Moon, and K.-S. Kwak, “Secure Channel for Molecular Communications,” in International Conference on Information and Communication Technology Convergence (ICTC) , doi: 10.1109/ICTC.2017.8190929 , IEEE, 2017, pp. 1–4.
- [211]
-
V. Loscri, C. Marchal, N. Mitton, G. Fortino, and A. V. Vasilakos, “Security and Privacy in Molecular Communication and Networking: Opportunities and Challenges,” IEEE Transactions on NanoBioscience , vol. 13, no. 3, pp. 198–207, 2014, doi: 10.1109/TNB.2014.2349111 .
- [212]
-
T. Nakano, M. J. Moore, F. Wei, A. V. Vasilakos, and J. Shuai, “Molecular Communication and Networking: Opportunities and Challenges,” IEEE Transactions on NanoBioscience , vol. 11, no. 2, pp. 135–148, 2012, doi: 10.1109/TNB.2012.2191570 .
- [213]
-
H.- H. Yen, X. Wang, and D. Wang, “QoS Aware Molecular Activation and Communication Scheme in Molecular Nanoscale Sensor Networks,” in International Conference on e-Health Networking, Applications and Services (Healthcom) , doi: 10.1109/HealthCom.2016.7749503 , IEEE, 2016, pp. 1–6.
- [214]
-
A Erofeev et al., “Novel Method for Rapid Toxicity Screening of Magnetic Nanoparticles,” Scientific Reports , vol. 8, no. 1, p. 7462, 2018, doi: 10.1038/s41598-018-25852-4 .
- [215]
-
R. Bogue, “Nanosensors: A Review of Recent Research,” Sensor Review , vol. 29, no. 4, pp. 310–315, 2009, doi: 10.1108/02602280910986539 .
- [216]
-
M. Egan, T. Q. Duong, and M. Di Renzo, “Biological Circuits for Detection in MoSK-Based Molecular Communication,” IEEE Access , vol. 7, pp. 21 094–21 102, 2019, doi: 10.1109/ACCESS.2019.2897173 .
- [217]
-
A. Marcone, M. Pierobon, and M. Magarini, “Parity-Check Coding Based on Genetic Circuits for Engineered Molecular Communication Between Biological Cells,” IEEE Transactions on Communications , vol. 66, no. 12, pp. 6221–6236, 2018, doi: 10.1109/TCOMM.2018.2859308 .
- [218]
-
S. Balasubramaniam et al., “Development of Artificial Neuronal Networks for Molecular Communication,” Nano Communication Networks , vol. 2, no. 2, pp. 150–160, 2011, doi: 10.1016/j.nancom.2011.05.004 .
- [219]
-
A. Noel, Y. Deng, D. Makrakis, and A. Hafid, “Active versus Passive: Receiver Model Transforms for Diffusive Molecular Communication,” in Global Communications Conference (GLOBECOM) , doi: 10.1109/GLOCOM.2016.7841566 , IEEE, 2016, pp. 1–6.
- [220]
-
L.- S. Meng, P.-C. Yeh, K.-C. Chen, and I. F. Akyıldız, “on Receiver Design for Diffusion-based Molecular Communication,” IEEE Transactions on Signal Processing , vol. 62, no. 22, pp. 6032–6044, 2014, doi: 10.1109/TSP.2014.2359644 .
- [221]
-
A. Noel, K. C. Cheung, and R. Schober, “Optimal Receiver Design for Diffusive Molecular Communication with Flow and Additive Noise,” IEEE Transactions on NanoBioscience , vol. 13, no. 3, pp. 350–362, 2014, doi: 10.1109/TNB.2014.2337239 .
- [222]
-
H. Arjmandi, A. Ahmadzadeh, R. Schober, and M. N. Kenari, “Ion Channel based Bio-synthetic Modulator for Diffusive Molecular Communication,” IEEE Transactions on NanoBioscience , vol. 15, no. 5, pp. 418–432, 2016, doi: 10.1109/TNB.2016.2557350 .
- [223]
-
M. Pierobon and I. F. Akyıldız, “A Physical end-to-end Model for Molecular Communication in Nanonetworks,” IEEE Journal on Selected Areas in Communications , vol. 28, no. 4, 2010, doi: 10.1109/JSAC.2010.100509 .
- [224]
-
U. A. Chude-Okonkwo, R. Malekian, and B. Maharaj, “Diffusion-controlled Interface Kinetics-inclusive System-theoretic Propagation Models for Molecular Communication Systems,” EURASIP Journal on Advances in Signal Processing , vol. 2015, no. 1, p. 89, 2015, doi: 10.1186/s13634-015-0275-1 .
- [225]
-
G. D. Ntouni and G. K. Karagiannidis, “Comparison of Amplitude Detection Techniques for Passive Receivers in Molecular Communications,” in International Conference on Modern Circuits and Systems Technologies (MOCAST) , doi: 10.1109/MOCAST.2017.7937650 , IEEE, 2017, pp. 1–4.
- [226]
-
C. T. Chou, “Impact of Receiver Reaction Mechanisms on the Performance of Molecular Communication Networks,” IEEE Transactions on Nanotechnology , vol. 14, no. 2, pp. 304–317, 2015, doi: 10.1109/TNANO.2015.2393866 ,
issn : 1536-125X.doi : 10.1109/TNANO.2015.2393866 . - [227]
-
M. Movahednasab, M. Soleimanifar, A. Gohari, M. Nasiri-Kenari, and U. Mitra, “Adaptive Transmission Rate with a Fixed Threshold Decoder for Diffusion-based Molecular Communication,” IEEE Transactions on Communications , vol. 64, no. 1, pp. 236–248, 2016, doi: 10.1109/TCOMM.2015.2501823 .
- [228]
-
B. C. Akdeniz, A. E. Pusane, and T. Tuğcu, “2-D Channel Transfer Function for Molecular Communication with an Absorbing Receiver,” in Symposium on Computers and Communications (ISCC) , doi: 10.1109/ISCC.2017.8024646 , IEEE, 2017, pp. 938–942.
- [229]
-
W. Haselmayr, D. Efrosinin, and W. Guo, “Normal Inverse Gaussian Approximation for Arrival Time Difference in Flow-induced Molecular Communications,” IEEE Transactions on Molecular, Biological and Multi-Scale Communications , vol. 3, no. 4, pp. 259–264, 2017, doi: 10.1109/TMBMC.2018.2887237 .
- [230]
-
G. Ardeshiri, A. Jamshidi, and A. Keshavarz-Haddad, “Performance Analysis of Decode and Forward Relay Network in Diffusion based Molecular Communication,” in Iranian Conference on Electrical Engineering (ICEE) , doi: 10.1109/IranianCEE.2017.7985383 , 2017, pp. 1992–1997.
doi : 10.1109/IranianCEE.2017.7985383 . - [231]
-
Z. Luo, L. Lin, W. Guo, S. Wang, F. Liu, and H. Yan, “One Symbol Blind Synchronization in SIMO Molecular Communication Systems,” IEEE Wireless Communications Letters , vol. 7, no. 4, pp. 530–533, 2018, doi: 10.1109/LWC.2018.2793197 .
- [232]
-
M. Egan, T. C. Mai, T. Duong, and M. Di Renzo, “Coordination via Advection Dynamics in Nanonetworks with Molecular Communication,” in International Conference on Communications (ICC) , doi: 10.1109/ICC.2018.8422573 , IEEE, 2018, pp. 1–6.
- [233]
-
L. Lin, J. Zhang, M. Ma, and H. Yan, “Time Synchronization for Molecular Communication with Drift,” IEEE Communications Letters , vol. 21, no. 3, pp. 476–479, 2017, doi: 10.1109/LCOMM.2016.2628903 .
- [234]
-
N. Farsad and A. Goldsmith, “Sliding Bidirectional Recurrent Neural Networks for Sequence Detection in Communication Systems,” in International Conference on Acoustics, Speech and Signal Processing (ICASSP) , doi: 10.1109/ICASSP.2018.8462140 , IEEE, 2018, pp. 2331–2335.
- [235]
-
N. Farsad and A. Goldsmith, “Neural Network Detection of Data Sequences in Communication Systems,” IEEE Transactions on Signal Processing , vol. 66, no. 21, pp. 5663–5678, 2018, doi: 10.1109/TSP.2018.2868322 ,
issn : 1053-587X.doi : 10.1109/TSP.2018.2868322 . - [236]
-
X. Qian and M. Di Renzo, “Receiver Design in Molecular Communications: an Approach based on Artificial Neural Networks,” in International Symposium on Wireless Communication Systems (ISWCS) , doi: 10.1109/ISWCS.2018.8491088 , IEEE, 2018, pp. 1–5.
- [237]
-
T. C. Mai, M. Egan, T. Q. Duong, and M. Di Renzo, “Event Detection in Molecular Communication Networks with Anomalous Diffusion,” IEEE Communications Letters , vol. 21, no. 6, pp. 1249–1252, 2017, doi: 10.1109/LCOMM.2017.2669315 .
- [238]
-
A. Shahbazi and A. Jamshidi, “Pre-coding Technique for Adaptive Threshold Detectors in Diffusion-based Molecular Communications,” in International Conference on Computer and Technology Applications (ICCTA) , doi: 10.1109/CATA.2018.8398656 , IEEE, 2018, pp. 59–63.
- [239]
-
H. Yan, G. Chang, Z. Ma, and L. Lin, “Derivative-based Signal Detection for High Data Rate Molecular Communication System,” IEEE Communications Letters , vol. 22, no. 9, pp. 1782–1785, 2018, doi: 10.1109/LCOMM.2018.2853617 .
- [240]
-
M. U. Riaz, H. Awan, and C. T. Chou, “Using Spatial Partitioning to Reduce Receiver Signal Variance in Diffusion-based Molecular Communication,” in International Conference on Nanoscale Computing and Communication , doi: 10.1145/3233188.3233192 , ACM, 2018, p. 12.
- [241]
-
A. Shahbazi and A. Jamshidi, “Improving Adaptive Receivers Performance in Molecular Communication via Diffusion,” IET NanoBiotechnology , vol. 13, no. 4, pp. 441–448, 2019, doi: 10.1049/iet-nbt.2018.5129 .
- [242]
-
K. Persaud and G. Dodd, “Analysis of Discrimination Mechanisms in the Mammalian Olfactory System using a Model Nose,” Nature , vol. 299, no. 5881, pp. 352–355, 1982, doi: 10.1038/299352a0 .
- [243]
-
J. W. Gardner and P. N. Bartlett, Electronic Noses: Principles and Applications , . Oxford University Press, USA, 1999, ISBN-13: 978-0198559559 .
- [244]
-
A. DAmico et al., “Olfactory Systems for Medical Applications,” Sensors and Actuators B: Chemical , vol. 130, no. 1, pp. 458–465, 2008, doi: 10.1016/j.snb.2007.09.044 .
- [245]
-
I. A. Casalinuovo, D. Di Pierro, M. Coletta, and P. Di Francesco, “Application of Electronic Noses for Disease Diagnosis and Food Spoilage Detection,” Sensors , vol. 6, no. 11, pp. 1428–1439, 2006, doi: 10.3390/s6111428 .
- [246]
-
K. C. Persaud, “Medical Applications of Odor-sensing Devices,” The International Journal of Lower Extremity Wounds , vol. 4, no. 1, pp. 50–56, 2005, doi: 10.1177/1534734605275139 .
- [247]
-
M. Peris and L. Escuder-Gilabert, “a Century Technique for Food Control: Electronic Noses,” Analytica Chimica Acta , vol. 638, no. 1, pp. 1–15, 2009, doi: 10.1016/j.aca.2009.02.009 .
- [248]
-
S Ampuero and J. Bosset, “the Electronic Nose Applied to Dairy Products: A Review,” Sensors and Actuators B: Chemical , vol. 94, no. 1, pp. 1–12, 2003, doi: 10.1016/S0925-4005(03)00321-6 .
- [249]
-
E. Schaller, J. O. Bosset, and F. Escher, “electronic Noses and their Application to Food,” LWT-Food Science and Technology , vol. 31, no. 4, pp. 305–316, 1998, doi: 10.1006/fstl.1998.0376 .
- [250]
-
A. Wilson and M. Baietto, “Applications and Advances in Electronic-Nose Technologies,” Sensors , vol. 9, no. 7, pp. 5099–5148, 2009, doi: 10.3390/s90705099 .
- [251]
-
E. de Hoffmann and V. Stroobant, Mass Spectrometry , . Wiley, 2007, ISBN-13: 978-0-470-03310-4 .
- [252]
-
B. Clerckx and C. Oestges, MIMO Wireless Networks: Channels, Techniques and Standards for Multi-antenna, Multi-user and Multi-cell Systems , . Academic Press, 2013, ISBN-13: 978-0123850553 .
- [253]
-
B. H. Koo, H. B. Yılmaz, C.-B. Chae, and A. Eckford, “Detection Algorithms for Molecular MIMO,” in International Conference on Communications (ICC) , doi: 10.1109/ICC.2015.7248473 , IEEE, 2015, pp. 1122–1127.
- [254]
-
N. Tavakkoli, P. Azmi, and N. Mokari, “Performance Evaluation and Optimal Detection of Relay-assisted Diffusion-based Molecular Communication with Drift,” IEEE Transactions on NanoBioscience , vol. 16, no. 1, pp. 34–42, 2017, doi: 10.1109/TNB.2016.2626313 .
- [255]
-
R. Mosayebi, V. Jamali, N. Ghoroghchian, R. Schober, M. Nasiri-Kenari, and M. Mehrabi, “Cooperative Abnormality Detection via Diffusive Molecular Communications,” IEEE Transactions on NanoBioscience , vol. 16, no. 8, pp. 828–842, 2017, doi: 10.1109/TNB.2017.2775704 .
- [256]
-
M. Kuscu and O. B. Akan, “Maximum Likelihood Detection with Ligand Receptors for Diffusion-based Molecular Communications in Internet of bio-Nano Things,” IEEE Transactions on NanoBioscience , vol. 17, no. 1, pp. 44–54, 2018, doi: 10.1109/TNB.2018.2792434 .
- [257]
-
S. M. Rouzegar and U. Spagnolini, “Channel Estimation for Diffusive MIMO Molecular Communications,” European Conference on Networks and Communications (EuCNC) , pp. 1–5, 2017, doi: 10.1109/EuCNC.2017.7980701 .
doi : 10.1109/EuCNC.2017.7980701 . - [258]
-
C. Lee, H. B. Yılmaz, C.-B. Chae, N. Farsad, and A. Goldsmith, “Machine Learning based Channel Modeling for Molecular MIMO Communications,” in International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) , doi: 10.1109/SPAWC.2017.8227765 , IEEE, 2017, pp. 1–5.
- [259]
-
M. A. Mangoud, M. Lestas, and T. Saeed, “Molecular Motors MIMO Communications for Nanonetworks Applications,” in Wireless Communications and Networking Conference (WCNC) , doi: 10.1109/WCNC.2018.8377406 , IEEE, 2018, pp. 1–5.
- [260]
-
B. Yin and M. Peng, “Performance analysis of cooperative relaying in diffusion-based molecular communication,” in International Conference on Computing, Networking and Communications (ICNC) , doi: 10.1109/WCSP.2017.8171166 , IEEE, 2018, pp. 752–756.
- [261]
-
N.- R. Kim, N. Farsad, C. Lee, A. W. Eckford, and C.-B. Chae, “an Experimentally Validated Channel Model for Molecular Communication Systems,” IEEE Access , vol. 7, pp. 81849 –81 858, 2019, doi: 10.1109/ACCESS.2018.2889683 .
- [262]
-
N. Farsad, D. Pan, and A. Goldsmith, “a Novel Experimental Platform for in-vessel Multi-chemical Molecular Communications,” in Global Communications Conference (GLOBECOM) , doi: 10.1109/GLOCOM.2017.8255058 , IEEE, 2017, pp. 1–6.
- [263]
-
H. Unterweger et al., “Experimental Molecular Communication Testbed based on Magnetic Nanoparticles in Duct Flow,” in International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) , doi: 10.1109/GLOCOM.2017.8255058 , IEEE, 2018, pp. 1–5.
- [264]
-
J. Zaloga et al., “Development of a Lauric Acid/Albumin Hybrid Iron Oxide Nanoparticle System with Improved Biocompatibility,” International Journal of Nanomedicine , vol. 9, p. 4847, 2014, doi: 10.2147/IJN.S68539 .
- [265]
-
H. Zhai, Q. Liu, A. V. Vasilakos, and K. Yang, “Anti-ISI Demodulation Scheme and its Experiment-based Evaluation for Diffusion-based Molecular Communication,” IEEE Transactions on NanoBioscience , vol. 17, no. 2, pp. 126–133, 2018, doi: 10.1109/TNB.2018.2797689 .
- [266]
-
C. Lee et al., “Molecular MIMO communication link,” in Conference on Computer Communications Workshops (INFOCOM WKSHPS) , doi: 10.1109/INFCOMW.2015.7179319 , IEEE, 2015, pp. 13–14.
- [267]
-
C. Lee et al., “Demo: Molecular MIMO with Drift,” in Annual International Conference on Mobile Computing and Networking (MobiCoM) , doi: 10.1145/2789168.2789181 , Paris, France: ACM, 2015, pp. 201–203,
isbn : 978-1-4503-3619-2.doi : 10.1145/2789168.2789181 . [Online]. Available: http://doi.acm.org/10.1145/2789168.2789181 . - [268]
-
N. A. Abbasi, D. Lafci, and O. B. Akan, “Controlled Information Transfer Through an in vivo Nervous System,” Scientific Reports , vol. 8, no. 1, p. 2298, 2018, doi: 10.1038/s41598-018-20725-2 .
- [269]
-
Y. Moritani, S. Hiyama, and T. Suda, “Molecular Communication for Health Care Applications,” in International Conference on Pervasive Computing and Communications Workshops (PERCOMW) , doi: 10.1109/PERCOMW.2006.97 , IEEE, 2006, 5–pp.
- [270]
-
O. B. Akan, H. Ramezani, T. Khan, N. A. Abbasi, and M. Kuscu, “Fundamentals of Molecular Information and Communication Science,” Proceedings of the IEEE , vol. 105, no. 2, pp. 306–318, 2017, doi: 10.1109/JPROC.2016.2537306 .
- [271]
-
R. Mosayebi, W. Wicke, V. Jamali, A. Ahmadzadeh, R. Schober, and M. Nasiri-Kenari, “Advanced Target Detection via Molecular Communication,” in IEEE Global Communications Conference (GLOBECOM) , doi: 10.1109/GLOCOM.2018.8647734 , 2018, pp. 1–7.
- [272]
-
Z. Sakkaff, A. Immaneni, and M. Pierobon, “Applying Molecular Communication Theory to Estimate Information Loss in Cell Signal Transduction: An Approach based on Cancer Transcriptomics,” in International Conference on Nanoscale Computing and Communication , doi: 10.1145/3233188.3233202 , ACM, 2018, p. 16.
- [273]
-
M. L. Simpson, G. S. Sayler, J. T. Fleming, and B. Applegate, “Whole-cell biocomputing,” Trends in Biotechnology , vol. 19, no. 8, pp. 317–323, 2001, doi: 10.1016/S0167-7799(01)01691-2 .
- [274]
-
D. Noble, “Opinion: The Rise of Computational Biology,” Nature Reviews Molecular Cell Biology , vol. 3, no. 6, p. 459, 2002, doi: 10.1038/nrm810 .
- [275]
-
T. C. Collier and C. Taylor, “Self-Organization in Sensor Networks,” Journal of Parallel and Distributed Computing , vol. 64, no. 7, pp. 866–873, 2004, doi: 10.1016/j.jpdc.2003.12.004 .
- [276]
-
M. D. Peysakhov and W. C. Regli, “Ant Inspired Server Population Management in a Service based Computing Environment,” in Swarm Intelligence Symposium (SIS) , doi: 10.1109/SIS.2005.1501643 , IEEE, 2005, pp. 357–364.
- [277]
-
M. T. Barros, “ -signaling-based Molecular Communication Systems: Design and Future Research Directions,” Nano Communication Networks , vol. 11, pp. 103–113, 2017, doi: 10.1016/j.nancom.2017.02.001 .
- [278]
-
G. Muzio, M. Kuscu, and O. B. Akan, “Selective Signal Detection with Ligand Receptors under Interference in Molecular Communications,” in International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) , doi: 10.1109/SPAWC.2018.8445876 , IEEE, 2018, pp. 1–5.
- [279]
-
S. Yuan, J. Wang, and M. Peng, “Performance Analysis of Reversible Binding Receptor based Decode-and-Forward Relay in Molecular Communication Systems,” IEEE Wireless Communications Letters , vol. 7, no. 5, pp. 880–883, 2018, doi: 10.1109/LWC.2018.2834525 .
- [280]
-
D. P. Martins, K. Leetanasaksakul, M. T. Barros, A. Thamchaipenet, W. Donnelly, and S. Balasubramaniam, “Molecular Communications Pulse-based Jamming Model for Bacterial Biofilm Suppression,” IEEE Transactions on Nanobioscience , 2018, doi: 10.1109/TNB.2018.2871276 .
- [281]
-
G. L. Adonias, M. T. Barros, L. Doyle, and S. Balasubramaniam, “utilising EEG Signals for Modulating Neural Molecular Communications,” in International Conference on Nanoscale Computing and Communication (NANOCOM) , doi: 10.1145/3233188.3236333 , ACM, 2018, p. 39.
- [282]
-
L. Felicetti, M. Femminella, and G. Reali, “Establishing Digital Molecular Communications in Blood Vessels,” in International Black Sea Conference on Communications and Networking (BlackSeaCom) , doi: 10.1109/BlackSeaCom.2013.6623381 , IEEE, 2013, pp. 54–58.
- [283]
-
Y. Sun, K. Yang, and Q. Liu, “Channel Capacity Modelling of Blood Capillary-based Molecular Communication with Blood Flow Drift,” in International Conference on Nanoscale Computing and Communication , doi: 10.1145/3109453.3109454 , ACM, 2017, p. 19.
- [284]
-
M. Kuscu and O. B. Akan, “Modeling Convection-Diffusion-Reaction Systems for Microfluidic Molecular Communications with Surface-based Receivers in Internet of Bio-Nano Things,” PloS one , vol. 13, no. 2, e0192202, 2018, doi: 10.1371/journal.pone.0192202 .
- [285]
-
M. Turan et al., “Transmitter Localization in Vessel-like Diffusive Channels using Ring-shaped Molecular Receivers,” IEEE Communications Letters , 2018, doi: 10.1109/LCOMM.2018.2871456 .
- [286]
-
M. Cole, J. Gardner, S Pathak, T. Pearce, and Z Rácz, “Towards a Biosynthetic Infochemical Communication System,” Procedia Chemistry , vol. 1, no. 1, pp. 305–308, 2009, doi: 10.1016/j.proche.2009.07.076 .
- [287]
-
L. Muñoz, N. Dimov, G. Carot-Sans, W. P. Bula, A. Guerrero, and H. J. Gardeniers, “Mimicking Insect Communication: Release and Detection of Pheromone, Biosynthesized by an Alcohol Acetyl Transferase Immobilized in a Microreactor,” PloS one , vol. 7, no. 11, e47751, 2012, doi: 10.1371/journal.pone.0047751 .
- [288]
-
S. B. Olsson et al., “a Novel Multicomponent Stimulus Device for use in Olfactory Experiments,” Journal of neuroscience methods , vol. 195, no. 1, pp. 1–9, 2011, doi: 10.1016/j.jneumeth.2010.09.020 .
- [289]
-
R. A. Russell, Odour Detection by Mobile Robots , . World Scientific, 1999, ISBN: 978-981-02-3791-2 .
- [290]
-
M. Cole, Z. Racz, J. W. Gardner, and T. C. Pearce, “a Novel Biomimetic Infochemical Communication Technology: From Insects to Robots,” in IEEE Sensors , doi: 10.1109/ICSENS.2012.6411357 , IEEE, 2012, pp. 1–4.
- [291]
-
J. Steuer, “Defining Virtual Reality: Dimensions Determining Telepresence,” Journal of Communication , vol. 42, no. 4, pp. 73–93, 1992, doi: 10.1111/j.1460-2466.1992.tb00812.x .
- [292]
-
M Chastrette, “Data Management in Olfaction Studies,” SAR and QSAR in Environmental Research , vol. 8, no. 3-4, pp. 157–181, 1998, doi: 10.1080/10629369808039139 .
- [293]
-
R. C. Araneda, A. D. Kini, and S. Firestein, “The Molecular Receptive Range of an Odorant Receptor,” Nature Neuroscience , vol. 3, no. 12, p. 1248, 2000, doi: 10.1038/81774 .
- [294]
-
J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol, Discrete Event System Simulation , . Pearson, 2005, ISBN-13: 978-0136062127 .
- [295]
-
L. Felicetti, M. Femminella, and G. Reali, “A Simulation Tool for Nanoscale Biological Networks,” Nano Communication Networks , vol. 3, no. 1, pp. 2–18, 2012, doi: 10.1016/j.nancom.2011.09.002 .
- [296]
-
M. Femminella, G. Reali, and A. V. Vasilakos, “A Molecular Communications Model for Drug Delivery,” IEEE Transactions on NanoBioscience , vol. 14, no. 8, pp. 935–945, 2015, doi: 10.1109/TNB.2015.2489565 .
- [297]
-
P. Masek, J. Hosek, D. Kovac, and J. Miklica, “On Simulation Techniques for Modeling of Molecular-Based Nanodevices Communication in Human Body Environment,” in International Conference on Telecommunications and Signal Processing (TSP) , doi: 10.1109/TSP.2015.7296339 , 2015.
- [298]
-
I. Llatser et al., “Exploring the Physical Channel of Diffusion-Based Molecular Communication by Simulation,” in IEEE Global Telecommunications Conference (GLOBECOM) , doi: 10.1109/GLOCOM.2011.6134028 , IEEE, 2011, pp. 1–5.
- [299]
-
I. Llatser, D. Demiray, A. Cabellos-Aparicio, D. T. Altilar, and E. Alarcón, “N3Sim: Simulation Framework for Diffusion-Based Molecular Communication Nanonetworks,” Simulation Modelling Practice and Theory , vol. 42, pp. 210–222, 2014, doi: 10.1016/j.simpat.2013.11.004 .
- [300]
-
R. Geyer, M. Stelzner, F. Büther, and S. Ebers, “BloodVoyagerS: Simulation of the Work Environment of Medical Nanobots,” in Proceedings of the 5th ACM International Conference on Nanoscale Computing and Communication , doi: 10.1145/3233188.3233196 , ACM, 2018, pp. 1–6.
- [301]
-
Y. Jian et al., “NanoNS3: Simulating Bacterial Molecular Communication Based Nanonetworks in Network Simulator 3,” in Proceedings of the ACM International Conference on Nanoscale Computing and Communication , doi: 10.1145/2967446.2967464 , ACM, 2016, pp. 1–7.
- [302]
-
G. Wei, P. Bogdan, and R. Marculescu, “Efficient Modeling and Simulation of Bacteria-Based Nanonetworks with BNSim,” IEEE Journal on Selected Areas in Communications , vol. 31, no. 12, pp. 868–878, 2013, doi: 10.1109/JSAC.2013.SUP2.12130019 .
- [303]
-
A. Akkaya, G. Genç, and T. Tuğcu, “HLA Based Architecture for Molecular Communication Simulation,” Simulation Modelling Practice and Theory , vol. 42, pp. 163–177, 2014, doi: 10.1016/j.simpat.2013.12.012 .
- [304]
-
Y. Deng, A. Noel, W. Guo, A. Nallanathan, and M. Elkashlan, “3D Stochastic Geometry Model for Large-Scale Molecular Communication Systems,” in IEEE Global Communications Conference (GLOBECOM) , doi: 10.1109/GLOCOM.2016.7841486 , IEEE, 2016, pp. 1–6.
- [305]
-
A. Noel and A. W. Eckford, “Asynchronous Peak Detection for Demodulation in Molecular Communication,” in IEEE International Conference on Communications (ICC) , doi: 10.1109/ICC.2017.7996904 , IEEE, 2017, pp. 1–6.
- [306]
-
A. Noel, K. C. Cheung, and R. Schober, “Multi-Scale Stochastic Simulation for Diffusive Molecular Communication,” in IEEE International Conference on Communications (ICC) , doi: 10.1109/ICC.2015.7248471 , IEEE, 2015, pp. 1109–1115.
- [307]
-
A. Noel, K. C. Cheung, and R. Schober, “On the Statistics of Reaction-Diffusion Simulations for Molecular Communication,” in Proceedings of the Annual International Conference on Nanoscale Computing and Communication , doi: 10.1145/2800795.2800821 , ACM, 2015, pp. 1–6.
- [308]
-
H. B. Yılmaz and C.-B. Chae, “Simulation Study of mMlecular Communication Systems with an Absorbing Receiver: Modulation and ISI Mitigation Techniques,” Simulation Modelling Practice and Theory , vol. 49, pp. 136–150, 2014, doi: 10.1016/j.simpat.2014.09.002 .
- [309]
-
Y. Chahibi, M. Pierobon, S. O. Song, and I. F. Akyıldız, “A molecular communication system model for particulate drug delivery systems,” IEEE Transactions on Biomedical Engineering , vol. 60, no. 12, pp. 3468–3483, 2013, doi: 10.1109/TBME.2013.2271503 .
- [310]
-
S. F. Bush, J. L. Paluh, G. Piro, V. S. Rao, R. V. Prasad, and A. W. Eckford, “Defining Communication at the Bottom,” IEEE Transactions on Molecular, Biological and Multi-Scale Communications , vol. 1, no. 1, pp. 90–96, 2015, doi: 10.1109/TMBMC.2015.2465513 .
- [311]
-
D. T. Gillespie, “Exact Stochastic Simulation of Coupled Chemical Reactions,” The Journal of Physical Chemistry , vol. 81, no. 25, pp. 2340–2361, 1977, doi: 10.1021/j100540a008 .
- [312]
-
S. Balasubramaniam and P. Lio’, “Multi-hop Conjugation Based Bacteria Nanonetworks,” IEEE Transactions on nanobioscience , vol. 12, no. 1, pp. 47–59, 2013, doi: 10.1109/TNB.2013.2239657 .
- [313]
-
Y. Wang, A. Noel, and N. Yang, A Novel A Priori Simulation Algorithm for Absorbing Receivers in Diffusion-Based Molecular Communication Systems , doi: 10.1109/TNB.2019.2910556 , 2019.
- [314]
-
F. Dinç, L. Thiele, and B. C. Akdeniz, “The Effective Geometry Monte Carlo Algorithm: Applications to Molecular Communication,” Physics Letters A , vol. 383, no. 22, pp. 2594–2603, 2019, doi: 10.1016/j.physleta.2019.05.029 .
- [315]
-
F. Dinç, M. Medvidović, and L. Thiele, “Effective Geometry Monte Carlo: A Fast and Reliable Simulation Framework for Molecular Communication,” IEEE Access , vol. 7, pp. 28 635–28 650, 2019, doi: 10.1109/ACCESS.2019.2902316 .
- [316]
-
X. Bao, J. Lin, and W. Zhang, “Channel Modeling of Molecular Communication via Diffusion with Multiple Absorbing Receivers,” IEEE Wireless Communications Letters , vol. 8, no. 3, pp. 809 –812, 2019, doi: 10.1109/LWC.2019.2894354 .
- [317]
-
P. Stroobant et al., “Fast Simulation of Interacting Carriers in Nanosimulators,” in International Conference on Nanoscale Computing and Communication , doi: 10.1145/3233188.3233200 , ACM, 2018, p. 18.
- [318]
-
T. J. Cain, “ The Application of GPU to Molecular Communication Studies ,” M.S. thesis, Eastern Washington University, 2018.
- [319]
-
N. Varshney, A. K. Jagannatham, and P. K. Varshney, “On Diffusive Molecular Communication with Mobile Nanomachines,” in Annual Conference on Information Sciences and Systems (CISS) , doi: 10.1109/CISS.2018.8362192 , IEEE, 2018, pp. 1–6.
- [320]
-
Y. Deng, A. Noel, W. Guo, A. Nallanathan, and M. Elkashlan, “Analyzing Large-Scale Multiuser Molecular Communication via 3-d Stochastic Geometry,” IEEE Transactions on Molecular, Biological and Multi-Scale Communications , vol. 3, no. 2, pp. 118–133, 2017, doi: 10.1109/TMBMC.2017.2750145 .
- [321]
-
C. Harper, M. Pierobon, and M. Mazarini, “Estimating Information Exchange Performance of Engineered Cell-to-Cell Molecular Communications: A Computational Approach,” in IEEE INFOCOM 2018-IEEE Conference on Computer Communications , doi: 10.1109/INFOCOM.2018.8485834 , IEEE, 2018, pp. 729–737.
- [322]
-
M. R. Bhatnagar and Ankit, “M-ary Poisson Reception in Molecular Communication,” Micro & Nano Letters , vol. 13, no. 4, pp. 509–513, 2018, doi: 10.1049/mnl.2017.0665 .
- [323]
-
W. Guo et al., “SMIET: Simultaneous Molecular Information and Energy Transfer,” IEEE Wireless Communications , vol. 25, no. 1, pp. 106–113, 2018, doi: 10.1109/MWC.2017.1600308 .
- [324]
-
Y. Zhou, Y. Chen, R. D. Murch, R. Wang, and Q. Zhang, “Simulation Framework for Touchable Communication on NS3Sim,” Nano communication networks , vol. 16, pp. 26–36, 2018, doi: 10.1016/j.nancom.2018.03.002 .
- [325]
-
Z. Xie, J. Hall, I. P. McCarthy, M. Skitmore, and L. Shen, “Standardization Efforts: The Relationship Between Knowledge Dimensions, Search Processes and Innovation Outcomes,” Technovation , vol. 48, pp. 69–78, 2016, doi: 10.1016/j.technovation.2015.12.002 .
- [326]
-
M. Hucka et al., “The Systems Biology Markup Language (SBML): A Medium for Representation and Exchange of Biochemical Network Models,” Bioinformatics , vol. 19, no. 4, pp. 524–531, 2003, doi: 10.1093/bioinformatics/btg015 .
- [327]
-
M. Turan, M. Ş. Kuran, H. B. Yılmaz, C.-B. Chae, and T. Tuğcu, “MOL-eye: A New Metric for the Performance Evaluation of a Molecular Signal,” in Wireless Communications and Networking Conference (WCNC), 2018 IEEE , doi: 10.1109/WCNC.2018.8377049 , IEEE, 2018, pp. 1–6.
- [328]
-
L. Felicetti, M. Femminella, G. Reali, T. Nakano, and A. V. Vasilakos, “TCP-like Molecular Communications,” IEEE Journal on Selected Areas in Communications , vol. 32, no. 12, pp. 2354–2367, 2014, doi: 10.1109/JSAC.2014.2367653 .
- [329]
-
M. C. Gürsoy, A. E. Pusane, and T. Tuğcu, “Molecule-as-a-frame: A Frame Based Communication Approach for Nanonetworks,” Nano communication networks , vol. 16, pp. 45–59, 2018, doi: 10.1016/j.nancom.2018.02.005 .
- [330]
-
S. Mishra, C Ghanshyam, N. Ram, S. Singh, R. Bajpai, and R. Bedi, “Alcohol Sensing of Tin Oxide Thin Film Prepared by Sol-Gel Process,” Bulletin of Materials Science , vol. 25, no. 3, pp. 231–234, 2002, doi: 10.1007/BF02711159 .
- [331]
-
S. Giannoukos, B. Brkić, S. Taylor, A. Marshall, and G. F. Verbeck, “Chemical Sniffing Instrumentation for Security Applications,” Chemical Reviews , vol. 116, no. 14, pp. 8146–8172, 2016, doi: 10.1021/acs.chemrev.6b00065 .
- [332]
-
M Statheropoulos et al., “Dynamic Vapor Generator that Simulates Transient Odor Emissions of Victims Entrapped in the Voids of Collapsed Buildings,” Analytical Chemistry , vol. 86, no. 8, pp. 3887–3894, 2014, doi: 10.1021/ac404175e .
- [333]
-
R. Johnson, R. G. Cooks, T. Allen, M. Cisper, and P. Hemberger, “Membrane Introduction Mass Spectrometry: Trends and Applications,” Mass Spectrometry Reviews , vol. 19, no. 1, pp. 1–37, 2000, doi: 10.1002/(SICI)1098-2787(2000)19:1<1::AID-MAS1>3.0.CO;2-Y .
- [334]
-
K. Demeestere, J. Dewulf, B. De Witte, and H. Van Langenhove, “Sample Preparation for the Analysis of Volatile Organic Compounds in Air and Water Matrices,” Journal of Chromatography A , vol. 1153, no. 1-2, pp. 130–144, 2007, doi: 10.1016/j.chroma.2007.01.012 .
- [335]
-
S. Giannoukos, B. Brkić, S. Taylor, and N. France, “Membrane Inlet Mass Spectrometry for Homeland Security and Forensic Applications,” Journal of the American Society for Mass Spectrometry , vol. 26, no. 2, pp. 231–239, 2015, doi: 10.1007/s13361-014-1032-7 .
- [336]
-
H Strathmann, “Membrane Separation Processes: Current Relevance and Future Opportunities,” AIChE Journal , vol. 47, no. 5, pp. 1077–1087, 2001, doi: 10.1002/aic.690470514 .
- [337]
-
S. Giannoukos, B. Brkić, S. Taylor, and N. France, “Monitoring of Human Chemical Signatures using Membrane Inlet Mass Spectrometry,” Analytical chemistry , vol. 86, no. 2, pp. 1106–1114, 2013, doi: 10.1021/ac403621c .
- [338]
-
B. Brkić, S. Giannoukos, N. France, R. Murcott, F. Siviero, and S. Taylor, “Optimized DLP Linear Ion Trap for a Portable Non-Scanning Mass Spectrometer,” International Journal of Mass Spectrometry , vol. 369, pp. 30–35, 2014, doi: 10.1016/j.ijms.2014.06.004 .
- [339]
-
S. Giannoukos, B. Brkić, and S. Taylor, “Analysis of Chlorinated Hydrocarbons in Gas Phase using a Portable Membrane inlet Mass Spectrometer,” Analytical Methods , vol. 8, no. 36, pp. 6607–6615, 2016, doi: 10.1039/C6AY00375C .
- [340]
-
S. Giannoukos, A. Agapiou, and S Taylor, “Advances in Chemical Sensing Technologies for VOCs in Breath for Security/Threat Assessment, Illicit Drug Detection, and Human Trafficking Activity,” Journal of Breath Research , vol. 12, no. 2, p. 027 106, 2018, doi: 10.1088/1752-7163/aa95dd .
- [341]
-
S. Giannoukos, M. J. A. Joseph, and S. Taylor, “Portable Mass Spectrometry for the Direct Analysis and Quantification of Volatile Halogenated Hydrocarbons in the Gas Phase,” Analytical Methods , vol. 9, no. 6, pp. 910–920, 2017, doi: 10.1039/C6AY03257E .
- [342]
-
W. Paul and H. Steinwedel, “Ein neues Massenspektrometer ohne Magnetfeld [a New Mass Spectrometer without Magnetic Field],” Zeitschrift f ü r Naturforschung A , vol. 8, no. 7, pp. 448–450, 1953, doi: 10.1515/zna-1953-0710 .
- [343]
-
C. E. Baukal Jr, V. Gershtein, and X. J. Li, Computational Fluid Dynamics in Industrial Combustion , . CRC press, 2000, ISBN-13: 978-0849320002 .
- [344]
-
B. R. Kusse and E. A. Westwig, Mathematical Physics: Applied Mathematics for Scientists and Engineers , . John Wiley & Sons, 2010, ISBN-13: 978-3527406722 .
- [345]
-
L. C. Andrews, Special Functions of Mathematics for Engineers , . Oxford University Press, 1997, ISBN-13: 978-0819483713 .
- [346]
-
J. M. Stockie, “the Mathematics of Atmospheric Dispersion Modeling,” Siam Review , vol. 53, no. 2, pp. 349–372, 2011, doi: 10.1137/10080991X .
- [347]
-
M. Çağlar, “Velocity Fields with Power-law Spectra for Modeling Turbulent Flows,” Applied Mathematical Modelling , vol. 31, no. 9, pp. 1934–1946, 2007, doi: 10.1016/j.apm.2006.08.001 .
- [348]
-
F. P. Incropera, A. S. Lavine, T. L. Bergman, and D. P. DeWitt, Fundamentals of Heat and Mass Transfer , . Wiley, 2006, ISBN-13: 978-0471457282 .
- [349]
-
R. F. Probstein, Physicochemical Hydrodynamics: an Introduction , . John Wiley & Sons, 2003, ISBN-13: 978-0471458302 .
- [350]
-
D. Frenkel and B. Smit, Understanding Molecular Simulation: from Algorithms to Applications , . Academic Press, 2001, vol. 1, ISBN-13: 978-0122673511 .
- [351]
-
W. W. Daniel, Applied Nonparametric Statistics , . Houghton Mifflin, 1980, ISBN-13: 978-0534381943 .
- [352]
-
R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye, Probability and Statistics for Engineers and Scientists, MyLab Statistics Update , . Pearson, 2016, ISBN-13: 978-0134115856 .
- [353]
-
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables , Revised. Dover Books on Mathematics, 1965, ISBN-13: 978-0486612720 .
- [354]
-
H. Melville, Moby-Dick; or, the Whale . Harper & Brothers, 1851, ISBN-13: 978-0007925568 .