1 Thesis Overview
1.1 Introduction
1.2 Contributions
1.3 Organisation of the Thesis
1.4 Publications
1.4.1 Journal Publications
1.4.2 Conference Proceedings
1.4.3 Poster Presentations
2 Background and Related Work
2.1 Introduction
2.1.1 Research History
2.1.2 Micro-Scale Molecular Communication
2.1.3 Macro-Scale Molecular Communication
2.2 Review Structure
2.3 Channel Theory
2.4 Propagation Speed
2.5 Methods of Propagation
2.5.1 Diffusion
2.5.1.1 Stochastic Approach
2.5.1.2 Analytical Approach
2.5.2 Advection
2.5.2.1 Stochastic Approach
2.5.2.2 Analytical Approach
2.5.3 Turbulent Flows
2.6 Modulation
2.6.1 Particle Quantity
2.6.2 Type and/or the structure of Particles
2.6.3 Time of Release
2.6.4 Hybrid Modulation Methods
2.7 Inter-symbol Interference (ISI)
2.7.1 Single Messenger Chemical
2.7.2 Multiple Messenger Chemicals
2.8 Error Correction
2.9 Information Security
2.10 Receivers
2.10.1 Micro-Scale Molecular Communication
2.10.2 Macro-Scale Molecular Communication
2.10.2.1 Electronic Nose
2.10.2.2 Mass Spectrometer
2.10.3 MIMO Applications
2.11 Experimental Analysis
2.12 Applications
2.12.1 Micro-Scale Molecular Communication
2.12.2 Macro-Scale Molecular Communication
2.13 Simulations
2.13.1 BiNS
2.13.2 N3Sim
2.13.3 COMSOL
2.13.4 NS2 and NS3
2.13.5 BNSim
2.13.6 NCSim
2.13.7 HLA
2.13.8 AcCoRD Simulator
2.13.9 Other Works
2.14 Standardisation
2.15 Conclusion
3 Experimental Setup
3.1 Introduction
3.2 Experimental Setup
3.2.1 Transmitter
3.2.2 Chemicals
3.2.3 Receiver
3.2.3.1 Membrane Inlet
3.2.3.2 Quadrupole Mass Analyser
3.3 Conclusion
4 Theory of Macro-Scale Molecular Communications
4.1 Introduction
4.2 Transmission of Molecules
4.2.1 Proposed Transmission Model
4.2.2 Open-Air Transmission
4.2.3 Closed-Boundary
4.2.4 The Radial-Advective-Diffusion Equation
4.2.4.1 Boundary Conditions
4.2.4.2 Absorption/Desorption Process
4.2.5 Calculation of the coefficient of Diffusivity
4.2.5.1 Entrance Length
4.2.5.2 Longitudinal Diffusivity
4.2.5.3 Transverse Diffusion
4.3 Simulation Framework
4.4 Conclusions
5 Analysis of Macro-Molecular Communications Parameters
5.1 Introduction
5.2 Noise Analysis
5.3 Signal Flow
5.3.1 Experiment Methodology
5.3.2 Signal Properties
5.3.3 Signal Energy and SNR
5.3.4 Modelling the Signal
5.4 Carrier Flow
5.4.1 Experimental Methodology
5.4.2 Signal Properties
5.4.3 Signal Energy and SNR
5.4.4 Modelling the Signal
5.5 Transmitted Bit Duration
5.5.1 Experimental Methodology
5.5.2 Signal Properties
5.5.3 Signal Energy and SNR
5.5.4 Modelling the Signal
5.6 Open-air Transmission
5.6.1 Experimental Methodology
5.6.2 Signal Properties
5.6.3 Signal Energy and SNR
5.6.4 Modelling the Signal
5.7 Closed-air Transmission
5.7.1 Experimental Methodology
5.7.2 Signal Properties
5.7.3 Signal Energy and SNR
5.7.4 Modelling the Signal
5.8 Conclusions
6 Modulation Analysis of Molecular Communications in the Macro-Scale
6.1 Introduction
6.2 M-ary Transmission
6.2.1 2-Ary Transmission
6.2.2 4-Ary Transmission
6.2.3 8-Ary Transmission
6.3 Molecular Inter-Symbol Interference (Mo-ISI)
6.3.1 One-to-Zero (o/z) Experiments
6.3.2 k Experiments
6.3.3 Residual Background Signal
6.4 Message Transmission Experiment
6.4.1 Results
6.5 Channel Capacity
6.6 Symbol-Error Rate (SER)
6.7 Theoretical Results
6.7.1 Symbol Duration
6.7.2 Coefficient of Diffusivity
6.7.3 Transmission Distance
6.7.4 Advective Flow
6.8 Bit Distribution
6.8.1 Symbol Period
6.8.2 Advective Flow
6.8.3 Diffusivity
6.8.4 Transmission Distance
6.9 Conclusion
7 Multi-Chemical Transmission
7.1 Introduction
7.2 Multi Chemical Transmission
7.3 Multi Chemical Noise
7.4 Molecular Quadrature Amplitude Modulation (MQAM)
7.4.1 Advective Flow
7.4.2 Coefficient of Diffusivity
7.4.3 Transmission Distance
7.5 Chemical Time Offset Keying (ChToK)
7.5.1 Experimental Analysis
7.6 Chemical Ratio Modulation (CRM)
7.6.1 Calculation of the modulation matrix
7.6.2 Experimental Analysis
7.7 Conclusion
8 Summary and Future-Work
8.1 Conclusion
8.2 Future Research Directions
8.2.1 Different Receivers
8.2.2 Turbulent Environments
8.2.3 Complex Geometries
8.2.4 Secure Chemical Communications
8.2.5 Novel Modulation Methods
A Derivation of the Thin-Film Solution
A.1 Derivation of the Thin-Film Solution
B Derivation of the Taylor-Aris Dispersion
B.1 Derivation of the Taylor-Aris Dispersion
C Photographs of the Experimental Setups
C.1 Experimental Setup
C.2 Transmitter
C.2.1 Odour Generator
C.2.2 Evaporation Chamber
D Derivation of the Optimal Sampling Time for 1D
D.1 Derivation of the Optimal Sampling Time for 1D
Glossary
Bibliography