
Topics on Robotics & Vision

M.Sc
Robotics
Lecture Book

2025.SS

D. T. McGuiness, PhD

Contents

1 Mobile Robot Localisation 3
1.1 Introduction . 3

1.2 The problems of Noise and Aliasing . 5

1.2.1 Sensor Noise . 5

1.2.2 Sensor Aliasing . 6

1.2.3 Effector Noise . 7

1.2.4 An Error Model for Odometric Position Estimation 9

1.3 Localisation v. Hard-Coded Navigation . 11

1.4 Representing Belief . 14

1.4.1 Single Hypothesis Belief . 14

1.4.2 Multiple Hypothesis Belief . 16

1.5 Representing Maps . 18

1.5.1 Continuous Representation . 19

1.5.2 Decomposition Methods . 21

1.5.3 Current Challenges . 24

1.6 Probabilistic Map-Based Localisation . 27

1.6.1 Introduction . 27

1.6.2 Markov Localisation . 29

1.6.3 Kalman Filter Localisation . 35

1.7 Other Examples of Localisation Methods . 40

1.7.1 Landmark-based Navigation . 40

1.7.2 Globally Unique Localisation . 41

1.7.3 Positioning Beacon systems . 43

1.7.4 Route-Based Localisation . 44

1.8 Building Maps . 45

1.8.1 Stochastic Map Technique . 46

1.8.2 Other Mapping Techniques . 48

2 Welcome to Linux 53
2.1 Learning the Linux Command Line . 53

2.1.1 A Short History on Computer Interfaces 54

2.1.2 Linux is a Nutshell . 56

2.1.3 Linux Distributions . 57

2.2 Installation . 59

2.3 Docker . 60

2.3.1 Dockerfile . 61

2.3.2 Running the Container . 66

3 Command Line Fundamentals 69
3.1 Introduction . 69

3.2 The Structure of Commands . 72

3.2.1 Some Rules Regarding the Syntax . 73

3.3 Helpful Keyboard Shortcuts for the Terminal . 75

3.4 When you need help with Commands . 77

3.5 Additional Information . 81

3.5.1 Use Tab completion on the Shell . 81

3.5.2 The info command . 81

3.5.3 The whatis command . 82

4 Working with Files and Folders 85
4.1 Introduction . 85

4.2 A Detailed Look in ls Command . 90

4.3 Creating and Removing Folders . 92

4.4 Move, Copy and Delete Files and Folders . 94

4.5 Role to Users and sudo . 96

4.6 File Permissions . 98

4.7 Hard and Symbolic Links . 101

4.7.1 Symbolic Links . 101

4.8 The Linux File System . 104

4.9 Common Command-Line Tools and Tasks . 107

4.9.1 The UNIX Philosophy . 107

4.9.2 Connecting Commands with Pipes . 109

4.9.3 Viewing Text Files with cat, head, tail, and less 109

4.10 Advanced Topics . 111

4.10.1 Find Linux Distribution and Kernel Information 111

4.10.2 Find System Hardware and Disk Information 112

5 Installation 115
5.1 ROS 2 Humble Hawksbill . 115

5.1.1 Introduction . 115

5.1.2 Setting up the Local . 115

5.1.3 Setting Up the Source Files . 116

5.1.4 Install ROS 2 Packages . 117

5.1.5 Setting Up the Environment . 118

5.2 Auto-Install Script . 119

6 ROS Concepts 123
6.1 Introduction . 123

6.2 Publisher and Subscriber Architecture . 124

6.3 Nodes - The Building Blocks . 125

6.4 The Discovery Process . 126

6.5 Communication Between Nodes . 127

6.5.1 Description . 127

6.5.2 Messages . 127

6.6 Topics . 133

6.6.1 Publisher - Subscriber Architecture . 133

6.6.2 Anonymity . 133

6.6.3 Strongly-Typed . 134

6.7 Services . 135

6.7.1 Service Server . 135

6.8 Actions . 137

6.8.1 Action Server . 137

6.8.2 Action Client . 138

6.9 Parameters . 139

6.9.1 A Detailed Look . 139

6.9.2 Parameter Interaction . 140

6.10 Working with Command Line . 142

6.11 Launch File . 144

7 Command Line Tools 145
7.1 Setting the Environment . 145

7.2 Turtles and Graphs . 148

7.3 A Deeper Look into Nodes . 153

7.4 Working with Topics . 156

7.5 Working with Services . 161

7.6 Working with Parameters . 165

7.7 A Practical Look into Actions . 169

7.8 Launching Nodes . 173

8 Client Libraries 175
8.1 Getting Started with Colcon . 175

8.2 Creating a Workspace . 179

8.3 Creating a Package . 183

8.4 Writing a Simple Publisher & Subscriber . 184

8.4.1 Writing the Publisher Node . 184

8.4.2 Writing the Subscriber Node . 188

8.4.3 Building and Running . 190

8.5 Writing a Simple Service and Client . 191

8.5.1 Writing the Service Node . 192

8.5.2 Writing the Client Node . 194

8.6 Creating Custom msg and srv Files . 197

8.6.1 Creating Custom Definitions . 198

8.6.2 Testing the Newly Built Interfaces . 200

8.7 Using Parameters in a Class . 205

8.8 Managing Dependencies . 211

8.8.1 Explaining Rosdep . 211

8.8.2 Explaining Pacakge Manifesto . 211

8.9 Creating an Action . 213

8.10 Writing an Action Server and Client . 215

8.11 Writing a Launch File . 216

9 Transform Library 221
9.1 A Gentle Introduction . 221

9.2 Writing a Static Broadcaster . 225

9.3 Writing a Listener . 230

9.4 Adding a Frame . 235

9.5 Writing a Broadcaster . 242

List of Figures

1.1 Navigation is one if not the most demanding and complicated task in Autonomous

Mobile Robotics (AMR). However a successful implementation will result in a versatile

AMR which can find its way in unknown environments such as exploring other planets

[UoW2023]. 3

1.2 General schematic for mobile robot localisation. 4

1.3 A sample environment. 11

1.4 An Architecture for Behavior-based Navigation 12

1.5 An Architecture for Map-based (or model-based) Navigation 12

1.6 On January 26th, 2274 Mars days into the mission, NASA declared Spirit a ’stationary

research station’, expected to stay operational for several more months until the

dust buildup on its solar panels forces a final shutdown [xkcd2025]. 13

1.7 The three (3) examples of single hypotheses of position using different map repre-

sentation. a) real map with walls, doors and furniture b) line-based map -> around

100 lines with two parameters c) occupancy grid based map -> around 3000 gird

cells sizing 50x50 cm d) topological map using line features (Z/S-lines) and doors

-> around 50 features and 18 nodes . 15

1.8 The presented robot-centric mapping framework enables mobile robots to create

consistent elevation maps of the terrain. Mapping does not necessarily need to be

done only in 2D as robots which will be used in outdoor environment would need the

height of the map as well [fankhauser2018probabilistic]. 18

1.9 A continous representation using polygons as environmental obstacles. 19

1.10 Example of a continuous-valued line representation of EPFL. left: real map right:

representation with a set of infinite lines. 20

1.11 The schematic for the Kalman filter localisation 38

1.12 An illustration showing the object-level landmarks in blue-boxes. (a,b) shows two

different indoor scenarios. The blue boxes represent the 3D object detection of

object-level landmarks. The red dots indicate the nodes of the topological map. The

yellow lines indicate the edges of the topological map. The green curve is the feasible

navigation trajectory generated based on the proposed method [wang2022object]. 41

1.13 . 43

1.14 2005 DARPA Grand Challenge winner Stanley performed SLAM as part of its

autonomous driving system [Kivaan2007]. 45

1.15 General schematic for concurrent localization and map building. 46

1.16 A naive, local mapping strategy with small local error leads to global maps that have

a significant error, as demonstrated by this real-world run on the left. By applying

topological correction, the grid map on the right is extracted [bruce2000fast]. . . 49

1.17 Stanford Racing and Victor Tango together at an intersection in the DARPA Urban

Challenge Finals. 52

2.1 Hughes telegraph, an early (1855) teleprinter built by Siemens and Halske. The cen-

trifugal governor to achieve synchronicity with the other end can be seen [Manske2009]. 54

2.2 Nokia Bell Labs Murray Hill, NJ (Original) . 54

2.3 Bourne shell interaction on Version 7 Unix (Original). 55

2.4 The kernel mapping of the Linux operating system. 56

2.5 The docker logo . 60

3.1 A graphical interface from the late 1980s, which features a TUI window for a man

page, a shaped window (oclock) as well as several iconified windows. In the lower

right we can see a terminal emulator running a Unix shell, in which the user can type

commands as if they were sitting at a terminal. - From Wikipedia 72

4.1 Beware of the sudo ghost. 96

4.2 For anyone who is interested in the UNIX philosopy, I would suggest reading this

book as it has parts written by numerous people who were the original developers of

the UNIX. 107

7.1 Generating a new turtlebot to be spawned. 151

7.3 A visual representation of the communication happening between the nodes /turtlesim

and /teleop. 157

7.4 . 158

7.5 . 159

9.1 A robot is comprised of numerous coordinate system as can be seen from this robot

and needs to be constantly be kept in check which tf2 allows [ros2iron2025]. . . 221

https://www.telecomreview.com/images/stories/2020/03/Nokia_Bell_Labs_achieves_world_record_in_fiber_optics-article.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/b/bf/Version_7_UNIX_SIMH_PDP11_Kernels_Shell.png/330px-Version_7_UNIX_SIMH_PDP11_Kernels_Shell.png

List of Tables

1.1 The certainty matrix for the robot [nourbakhsh1995dervish]. 33

2.1 Most popular distributions used according to distrowatch. 58

3.1 Types of shells used in industry and academia. For reference, the authors computer

uses zsh. 70

4.1 Octal Notation and their numerical meaning. 99

4.2 The value and their meaning using octal notation 99

6.1 Current types supported by Robot Operating System 2 (ROS) Humble. 128

https://distrowatch.com/

Chapter1
Mobile Robot Localisation

Table of Contents

1.1 Introduction . 3
1.2 The problems of Noise and Aliasing . 5
1.3 Localisation v. Hard-Coded Navigation . 11
1.4 Representing Belief . 14
1.5 Representing Maps . 18
1.6 Probabilistic Map-Based Localisation . 27
1.7 Other Examples of Localisation Methods . 40
1.8 Building Maps . 45

1.1 Introduction

Figure 1.1: Navigation is one if not the most demanding and complicated task in AMR. However a successful implementation will
result in a versatile AMR which can find its way in unknown environments such as exploring other planets [UoW2023].

Navigation is one of, if not, the most challenging problem faced by an AMR and for the robot to be

able to successfully navigate its environment, it requires four (4) functions:

Perception the robot must be able to interpret its sensors to extract meaningful data,

Localisation the robot must be able to determine its position within the environment,

Chapter1 Mobile Robot Localisation D. T. McGuiness, PhD

Figure 1.2: General schematic for mobile robot localisation.

Cognition the robot must be able to decide how to act to achieve its goals,

Motion control the robot must be able to modulate its motor outputs to achieve the desired

trajectory.

Of these four (4) aforementioned components, localisation has received the greatest research

attention in the past and, as a result, significant advances have been made on this front, presented

in [bailey2002mobile], [campbell2020localization], and [hodge2023sensors]. In this chapter, we

will explore the successful localisation methodologies and techniques used in academic research and

industrial application [jaradat2017challenges].

The structure of the chapter is as follows:

� We will describe how sensor and effector uncertainty is responsible for the difficulties of

localisation in Section 1.2,

� Then, in Section 1.3, we will have a look at the two (2) extreme approaches to dealing with

the challenge of robot localisation [filliat2003map]:

– Avoiding localisation altogether,

– Performing explicit map-based localisation

� The remainder of the chapter discusses the question of representation, which we will have a

look at different case studies of successful localisation systems using a variety of representations

and techniques to achieve AMR localisation.

Page 4 Robotics

1.2 The problems of Noise and Aliasing

1.2 The problems of Noise and Aliasing

If one could attach an accurate Global Positioning System (GPS) sensor to an AMR, much of the

localisation problem would be obviated. GPS would then inform the robot of its exact position and

orientation, indoors and outdoors, so the answers to the questions,

Where am I? , Where am I going?, and, How should I get there? [leonard2012directed]

would always be immediately available.

Unfortunately, such a sensor is NOT currently practical.1 1Of course, this misleading
statement as we have
technology which allows
the shrinking of errors
down to cm using real-time
kinematic positioning which
is used to correct Global
Navigation Satellite System
(GNSS), which transmits
the robot’s location by
longitude, latitude, altitude,
and a timestamp
[hodge2023sensors].

The existing GPS network provides

accuracy to within several m [wing2005consumer], which is still not the optimal accuracy for

localising human-scale AMRs as well as miniature AMRs such as desk robots and the body-navigating

nano-robots of the future.

In addition, GPS cannot function indoors or in obstructed areas and are therefore limited in their

workspace. But, looking beyond the limitations of GPS, localisation implies more than knowing one’s

absolute position in the Earth’s reference frame.

Consider a robot which is interacting with humans. This robot may need to identify its absolute

position, but its relative position with respect to target humans is also equally important. Its

localisation task can include:

� identifying humans using its sensor array [bellotto2007people],

� then computing its relative position to the humans.

Furthermore, during operation a robot will select a strategy for achieving its goals. If it intends to

reach a particular location, then localisation may not be enough. The robot may need to acquire or

build an environmental model,2 2i.e., a map representing
2D space if it is an indoor
space which is level, or a
3D space if it is navigating
rough terrain.

which aids it in planning a path to the goal.

Localisation means more than simply determining an absolute pose in space. It means building

a map, then identifying the robot’s position relative to that map.

Clearly, the robot’s sensors and effectors play an integral role in all the above forms of

localisation. It is because of the inaccuracy and incompleteness of these sensors and effectors

localisation poses difficult challenges.

1.2.1 Sensor Noise

Sensors are the fundamental robot input for the process of perception, and therefore the degree

to which sensors can discriminate world state is critical. Sensor noise produces a limitation on the

consistency of sensor readings in the same environmental state and, therefore, on the number of

Robotics Page 5

Chapter1 Mobile Robot Localisation D. T. McGuiness, PhD

useful bits available from each sensor reading.

Often, the source of sensor noise problems is that some environmental features are not

captured by the robot’s representation and are thus overlooked.

For example, a vision system used for indoor navigation33For example, this could
be indoor office building, or

a warehouse.

may use the colour values detected by its

colour Charge Coupled Device (CCD) camera. When the Sun is hidden by clouds, the illumination of

the building’s interior changes due to windows throughout the building. As a result, hue4

4One of the properties of a
colour, defined as the

degree to which a stimulus
can be described as similar
to or different from stimuli

that are described as red,
orange, yellow, green, blue,

violet within certain
theories of colour vision.

values are

not constant. The colour CCD appears noisy from the robot’s perspective as if subject to random

error, and the hue values obtained from the CCD camera will be unusable, unless the robot is able

to note the position of the Sun and clouds in its representation.

Illumination dependency is only one example of the apparent noise in a vision-based sensor

system [sridharan2009color]. Picture jitter, signal gain, blooming and blurring are all

additional sources of noise, potentially reducing the useful content of a colour video image.

Consider the noise level of ultrasonic range-measuring sensors, such as sonars, as we discussed

previously. When a sonar transducer emits sound towards a relatively smooth and angled surface,

much of the signal will coherently reflect away, failing to generate a return echo. Depending on the

material characteristics, a small amount of energy may return nonetheless. When this level is close

to the gain threshold of the sonar sensor, then the sonar will, at times, succeed and, at other times,

fail to detect the object. From the robot’s perspective, a virtually unchanged environmental state

will result in two (2) different possible sonar readings:

one short, and one long which causes an nondeterministic behaviour.

The poor Signal-to-Noise Ratio (SNR) of a sonar sensor is further confounded by interference

between multiple sonar emitters. Often, research robots have between 12 to 48 sonars on a single

platform. In acoustically reflective environments, multipath interference5

5The propagation
phenomenon resulting in

signals reaching the
receiver by two (2) or more
paths. Causes of multipath

can be atmospheric
ducting, ionospheric

reflection and refraction,
and reflection from water

bodies and terrestrial
objects such as mountains

and buildings.

is possible between the

sonar emissions of one transducer and the echo detection circuitry of another transducer. The result

can be dramatically large errors in ranging values due to a set of coincidental angles. Such errors

occur rarely, less than 1% of the time, and are virtually random from the robot’s perspective.

In conclusion, sensor noise reduces the useful information content of sensor readings. Clearly, the

solution is to take multiple readings into account, employing temporal fusion or multi-sensor fusion66Sensor fusion is the
process of using

information from several
different sensors to

estimate the state of a
dynamic system. The

resulting estimate is, in
some senses, better than it

would be if the sensors
were used individually

[GALAR20171].

to increase the overall information content of the robot’s inputs.

1.2.2 Sensor Aliasing

Aliasing is the second major shortcoming of AMR sensors which cause them to give little information

content, further amplifying the problem of perception and localisation.

Information The Human Experience

Page 6 Robotics

1.2 The problems of Noise and Aliasing

The problem, known as sensor aliasing, is a phenomenon that humans seldom encounter. The human sensory

system, particularly the visual system, tends to receive unique inputs in each unique local state within normal

usage [williams1985aliasing]. In other words, every different place looks different. The power of this unique

mapping is only apparent when one considers situations where this fails to hold.

Consider moving through an unfamiliar building that is completely dark. When the visual system sees only

black, one’s localisation system quickly degrades. Another useful example is that of a human-sized maze

made from tall hedges. Such mazes have been created for centuries, and humans find them extremely difficult

to solve without landmarks or clues because, without visual uniqueness, human localisation competence

degrades rapidly.

In robots, the non-uniqueness of sensors readings, or sensor aliasing,7

7Sensor aliasing in multiple
types of sensors. One of
the most apparent one is
usually seen in digital
images. For example, in
the image above, due to
low sampling, moire
pattern starts to be seen
[maksim2006].

is the norm and not the

exception. Consider a narrow-beam rangefinder such as ultrasonic or infrared rangefinders. This

sensor provides range information in a single direction without any additional data regarding material

composition such ascolor, texture and hardness. Even for a robot with several such sensors in an

array, there are a variety of environmental states that would trigger the same sensor values across the

array. Formally, there is a many-to-one mapping from environmental states to the robot’s perceptual

inputs. Therefore, the robot’s sensors cannot distinguish from among these many states.

A classical problem with sonar-based robots involves distinguishing between humans and

inanimate objects in an indoor setting [blumrosen2014noncontact, sabatini1998method].

When facing an apparent obstacle in front of itself, should the robot say “Excuse

me” because the obstacle may be a moving human, or should the robot plan a

path around the object because it may be a cardboard box?

With sonar alone, these states are aliased and differentiation is impossible.

The navigation problem due to sensor aliasing is that, even with noise-free sensors, the amount of

information is generally insufficient to identify the robot’s accurate position from a single sensor’s

reading. Therefore techniques needs to be employed by the robot programmer which base the

robot’s localisation on a series of readings and sufficient information to recover the robot’s position

over time.

1.2.3 Effector Noise

The challenges of localisation does NOT lie with sensor technologies alone. Just as robot sensors

are noisy, limiting the information content of the signal, so do the robot effectors.

A single action taken by a AMR may have several different possible results, even though

from the robot’s point of view the initial state before the action was taken is well-known.

Robotics Page 7

Chapter1 Mobile Robot Localisation D. T. McGuiness, PhD

In short, AMR effectors introduce uncertainty about future state.8

8An over-exaggerated
example of effector noise

where the motion is
severely affected by the

uncertainty caused by the
deterministic error.

The simple act of moving tends

to increase the uncertainty of a AMR. There are, of course, exceptions. Using filters and predictive

modelling, the motion can be carefully planned so as to minimise this effect, and indeed sometimes

to actually result in more certainty. Furthermore, when the robot actions are taken in concert with

careful interpretation of sensory feedback, it can compensate for the uncertainty introduced by noisy

actions using the information provided by the sensors.

First, however, it is important to understand the precise nature of the effector noise that impacts

AMR. It is important to note that, from the robot’s point of view, this error in motion is viewed as

error in the odometer, or the robot’s inability to estimate its own position over time using knowledge

of its kinematics and dynamics. The true source of error generally lies in an incomplete model of

the environment.

For instance, the robot does NOT model the fact that the floor may be sloped, the wheels

may slip, and a human may push the robot.

All of these unmodeled sources of error result in:

� inaccuracy between the physical motion of the robot,

� the intended motion of the robot, and the

� proprioceptive sensor estimates of motion.

In odometry and dead reckoning99The process of
calculating the current

position of a moving object
by using a previously

determined position, or fix,
and incorporating estimates

of speed, heading (or
direction or course), and

elapsed time.

the position update is based on proprioceptive sensors. The

movement of the robot, sensed with wheel encoders and /or heading sensors is integrated to compute

position. Because the sensor measurement errors are integrated, the position error accumulates

over time. Thus the position has to be updated from time to time by other localisation mechanisms.

Otherwise the robot is not able to maintain a meaningful position estimate in long run.

In the following we will concentrate on odometry based on the wheel sensor readings of a

differential drive robot only [batavia2000path].1010Using additional heading

sensors (e.g. gyroscope)
can help to reduce the

cumulative errors, but the
main problems remain the

same.

There are many sources of odometric error, from environmental factors to resolution:

� Limited resolution during integration1111time increments,
measurement resolution

� Misalignment of wheels causing deterministic error,

� Unequal wheel diameter, which again, causing deterministic error,

� Unequal floor contact, which can cause slipping during operation.

Some of the errors might be deterministic1212To reiterate,
deterministic errors are any

errors which can be
avoided and are generally
caused by bad design or
poorly calibrated sensors.

(systematic). However, there are still a number of

non-deterministic (random) errors which remain, leading to uncertainties in position estimation over

time. From a geometric point of view one can classify the errors into three (3) types:

Page 8 Robotics

1.2 The problems of Noise and Aliasing

Range error Integrated path length of the robot movement, as in the sum of wheel motion.

Turn error Similar to range error, but for turns which are difference of the wheel motions.

Drift error difference in the error of the wheels leads to an error in the robot’s angular orientation.

Over long periods of time, turn and drift errors far outweigh range errors, as their contribute to the

overall position error is non-linear. Consider a robot, whose position is initially perfectly well-known,

moving forward in a straight line along the x axis. The error in the y-position introduced by a

move of d meters will have a component of d sin∆θ, which can be quite large as the angular error

∆θ grows. Over time, as an AMR moves about the environment, the rotational error between its

internal reference frame and its original reference frame grows quickly. As the robot moves away

from the origin of these reference frames, the resulting linear error in position grows quite large. It

is instructive to establish an error model for odometric accuracy and see how the errors propagate

over time.

1.2.4 An Error Model for Odometric Position Estimation

Generally the pose (position) of a robot is represented by the vector

p =

xy
θ


For a differential drive robot the position can be estimated starting from a known position by

integrating the movement (summing the incremental travel distances). For a discrete system with a

fixed sampling interval ∆t the incremental travel distances (∆x ; ∆y ; ∆θ) are:

∆x = ∆s cos
(
θ + ∆θ/2

)
∆y = ∆s sin

(
θ + ∆θ/2

)
∆θ =

∆s r − ∆s l
b

and ∆s =
∆s r + ∆s l
2

As we discussed earlier, odometric position updates can give only a very rough estimate of the

actual position. Due to integration errors of the uncertainties of p and the motion errors during the

incremental motion (s ;s) the position error based on odometry integration rl grows with time. In

the next step we will establish an error model for the integrated position p’ to obtain the of the

odometric position estimate. To do so, we assume that at the covariance matrix starting point

the initial covariance matrix is known. For the motion increment p (s ;s) we assume the following

covariance matrix : rl where s and s are the distances travelled by each wheel, and k , k are error

constants rlrl representing the non-deterministic parameters of the motor drive and the wheel-floor

inter- action. As you can see in equation (5.8) we made the following assumption

� The two (2) errors of the individually driven wheels are independent.13 13If there is more
knowledge regarding the
actual robot kinematics,
the correlation terms of
the covariance matrix could
also be used.

� The errors are proportional to the absolute value of the travelled distances
(
δs r; δs l

)
.

Robotics Page 9

Chapter1 Mobile Robot Localisation D. T. McGuiness, PhD

These assumptions, while NOT perfect in the slightest, are nevertheless suitable and will therefore

be used for the further development of the error model.

The motion errors are due to unprecise movement because of deformation of wheel, slippage,

unequal floor, errors in encoders, . . .

The values for the error constants k r and k l depend on the robot and the environment and

should be experimentally determined by performing and analysing representative movements.

If we assume that p and ∆ rl =
(
δs r; δs l

)
are uncorrelated and the derivation of f (equ. (5.7)) can

be reasonably approximated by the first-order Taylor expansion (linearization) we conclude, using

the error propagation law (see section 4.2.3):

Σ
p ′ = ∇pf ·Σ p · ∇pf T +∇δ rl

f ·Σffi · ∇δ rl
f T

The covariance matrix is, of course, always given by the p p’

Page 10 Robotics

1.3 Localisation v. Hard-Coded Navigation

1.3 Localisation v. Hard-Coded Navigation

Fig. 1.3 depicts a standard indoor environment an AMR is set to navigate. Now, suppose an AMR

in question must deliver messages between two (2) specific rooms in this environment:

These are rooms A and B.

In creating a navigation system for this task, it is clear the AMR will need sensors and a motion

control system. Sensors are required to avoid hitting moving obstacles such as humans, and some

motion control system is required so that the robot can actively move.

Figure 1.3: A sample environment.

It is less evident, however, whether or not this AMR will require a localisation system. Localisation

may seem mandatory to successfully navigate between the two (2) rooms. It is through localising on

a map, after all, which the robot can hope to recover its position and detect when it has arrived

at the goal location. It is true that, at the least, the robot must have a way of detecting the goal

location. However, explicit localisation with reference to a map is NOT the only strategy that

qualifies as a goal detector.

An alternative, adopted by the behaviour-based community, suggests that, since sensors and effectors

are noisy and information-limited, one should avoid creating a geometric map for localisation. Instead,

they suggest designing sets of behaviours which together result in the desired robot motion.

In its essence, this approach avoids explicit reasoning about localisation and position, and

therefore generally avoids explicit path planning as well.

This technique is based on a idea that, there exists a procedural solution to the particular navigation

problem at hand. For example, in Fig. 1.3, the behavioralist approach to navigating from Room

A to Room B might be to design a left-wall-following behavior and a detector for Room B that

is triggered by some unique queue in Room B, such as the color of the carpet. Then, the robot

can reach Room B by engaging the left wall follower with the Room B detector as the termination

condition for the program.

Robotics Page 11

Chapter1 Mobile Robot Localisation D. T. McGuiness, PhD

Figure 1.4: An Architecture for Behavior-based Navigation

The architecture of this solution to a specific navigation problem is shown in Fig. 1.4. The key

advantage of this method is that, when possible, it may be implemented very quickly for a single

environment with a small number of goal positions. It suffers from some disadvantages, however.

� The method does not directly scale to other environments or to larger environments. Often,

the navigation code is location-specific, and the same degree of coding and debugging is

required to move the robot to a new environment.

� The underlying procedures, such as left-wall-follow, must be carefully designed to produce the

desired behaviour. This task may be time-consuming and is heavily dependent on the specific

robot hardware and environmental characteristics.

� A behaviour-based system may have multiple active behaviors at any one time. Even when

individual behaviours are tuned to optimise performance, this fusion and rapid switching

between multiple behaviors can negate that fine-tuning. Often, the addition of each new

incremental behavior forces the robot designer to re-tune all of the existing behaviors again to

ensure that the new interactions with the freshly introduced behavior are all stable

In contrast to the behaviour-based approach, the map-based approach includes both localisation and

cognition modules shown in Fig. 1.5.

Figure 1.5: An Architecture for Map-based (or model-based) Navigation

In map-based navigation, the robot explicitly attempts to localise by collecting sensor data, then

updating some belief about its position with respect to a map of the environment. The key advantages

of the map-based approach for navigation are as follows:

� The explicit, map-based concept of position makes the system’s belief about position transpar-

Page 12 Robotics

1.3 Localisation v. Hard-Coded Navigation

ently available to the human operators.

� The existence of the map itself represents a medium for communication between human

and robot as the human can simply give the robot a new map if the robot goes to a new

environment.

� The map, if created by the robot, can be used by humans as well, achieving two uses.

The map-based approach will require more up-front development effort to create a navigating AMR.

The hope is that the development effort results in an architecture which can successfully map and

navigate a variety of environments, thereby compensating for the up-front design cost over time.

Figure 1.6: On January 26th, 2274 Mars days into the mission, NASA declared
Spirit a ’stationary research station’, expected to stay operational for several
more months until the dust buildup on its solar panels forces a final shutdown
[xkcd2025].

Of course the primary risk of the

map-based approach is that an in-

ternal representation, rather than

the real world itself, is being con-

structed and trusted by the robot.

If that model diverges from reality,14

14As in if the robot gets
the wrong idea about its
environment and draws the
wrong map.

then the robot’s behaviour may

be undesirable at best or wrong at

worst, even if the raw sensor val-

ues of the robot are only transiently

incorrect.

In the remainder of this chapter, we

focus on a discussion of map-based

approaches and, specifically, the lo-

calisation component of these tech-

niques. These approaches are par-

ticularly appropriate for study given

their significant recent successes in

enabling AMR to navigate a variety

of environments, from academic re-

search buildings to factory floors

and museums around the world.

Robotics Page 13

Chapter1 Mobile Robot Localisation D. T. McGuiness, PhD

1.4 Representing Belief

The fundamental issue which differentiates different types of map-based localisation systems is the

issue of representation. There are two (2) specific concepts which the robot must represent, and

each has its own unique possible solutions.

1. Representation of the environment,

2. The map.

What aspects of the environment are contained in this map? At what level of fidelity

does the map represent the environment? These are the design questions for map

representation.

The robot must also have a representation of its belief regarding its position on the map.

Does the robot identify a single unique position as its current position, or does it describe

its position in terms of a set of possible positions? If multiple possible positions are

expressed in a single belief, how are those multiple positions ranked, if at all?

These are the design questions for belief representation. Decisions along these two (2) design

axes can result in varying levels of architectural complexity, computational complexity and overall

localisation accuracy.

We will start by discussing belief representation. The first major branch in the classification of

belief representation systems differentiates between single hypothesis and multiple hypothesis belief

systems.

Single Former covers solutions in which the robot postulates its unique position,

Multiple Enables a AMR to describe the degree to which it is uncertain about its position.

A sampling of different belief and map representations is shown in figure 5.9.

1.4.1 Single Hypothesis Belief

The single hypothesis belief representation is the most direct possible postulation of an AMR’s

position [reuter1999scan].

Given some environmental map, the robot’s belief about position is expressed as a single

unique point on the map.

In Fig. 1.7, three (3) examples of a single hypothesis belief are shown using three different map

representations of the same actual environment shown in Fig. 1.7a. In Fig. 1.7b, a single point is

geometrically annotated as the robot’s position in a continuous two-dimensional geometric map.

Page 14 Robotics

1.4 Representing Belief

Figure 1.7: The three (3) examples of single hypotheses of position using different map representation. a) real map with walls, doors
and furniture b) line-based map -> around 100 lines with two parameters c) occupancy grid based map -> around 3000
gird cells sizing 50x50 cm d) topological map using line features (Z/S-lines) and doors -> around 50 features and 18 nodes

In Fig. 1.7c, the map is a discrete, tessellated map, and the position is noted at the same level

of fidelity as the map cell size. In Fig. 1.7d, the map is not geometrical at all but abstract and

topological. In this case, the single hypothesis of position involves identifying a single node i in the

topological graph as the robot’s position.

The principal advantage of the single hypothesis representation of position stems from the fact that,

given a unique belief, there is no position ambiguity. The unambiguous nature of this representation

facilitates decision-making at the robot’s cognitive level (e.g. path planning). The robot can simply

assume that its belief is correct, and can then select its future actions based on its unique position.

Just as decision-making is facilitated by a single-position hypothesis, so updating the robot’s belief

regarding position is also facilitated, since the single position must be updated by definition to a new,

single position. The challenge with this position update approach, which ultimately is the principal

disadvantage of single-hypothesis representation, is that robot motion often induces uncertainty due

to effectory and sensory noise.

Robotics Page 15

Chapter1 Mobile Robot Localisation D. T. McGuiness, PhD

Forcing the position update process to always generate a single hypothesis of position is

challenging and, often, impossible.

1.4.2 Multiple Hypothesis Belief

In the case of multiple hypothesis beliefs regarding position, the robot tracks NOT just a single

possible position but a possibly infinite set of positions. In one simple example originating in the

work of Jean-Claude Latombe [5, 89], the robot’s position is described in terms of a convex polygon

positioned in a two-dimensional map of the environment.

This multiple hypothesis representation communicates the set of possible robot positions geometrically,

with no preference ordering over the positions. Each point in the map is simply either contained by

the polygon and, therefore, in the robot’s belief set, or outside the polygon and thereby excluded.

Mathematically, the position polygon serves to partition the space of possible robot positions. Such

a polygonal representation of the multiple hypothesis belief can apply to a continuous, geometric

map of the environment or, alternatively, to a tessellated, discrete approximation to the continuous

environment.

It may be useful, however, to incorporate some ordering on the possible robot positions, capturing

the fact that some robot positions are likelier than others. A strategy for representing a continuous

multiple hypothesis belief state along with a preference ordering over possible positions is to model

the belief as a mathematical distribution. For example, [42,47] notate the robot’s position belief

using an X,Y point in the two-dimensional environment as the mean µ plus a standard deviation

parameter σ, thereby defining a Gaussian distribution. The intended interpretation is that the

distribution at each position represents the probability assigned to the robot being at that location.

This representation is particularly amenable to mathematically defined tracking functions, such as

the Kalman Filter, that are designed to operate efficiently on Gaussian distributions.

An alternative is to represent the set of possible robot positions, not using a single Gaussian

probability density function, but using discrete markers for each possible position. In this case, each

possible robot position is individually noted along with a confidence or probability parameter (See

Fig. (5.11)). In the case of a highly tessellated map this can result in thousands or even tens of

thousands of possible robot positions in a single belief state.

The key advantage of the multiple hypothesis representation is that the robot can explicitly maintain

uncertainty regarding its position. If the robot only acquires partial information regarding position

from its sensors and effectors, that information can conceptually be incorporated in an updated

belief.

A more subtle advantage of this approach revolves around the robot’s ability to explicitly measure

its own degree of uncertainty regarding position. This advantage is the key to a class of localisation

and navigation solutions in which the robot not only reasons about reaching a particular goal, but

reasons about the future trajectory of its own belief state. For instance, a robot may choose paths

Page 16 Robotics

1.4 Representing Belief

that minimise its future position uncertainty. An example of this approach is [90], in which the

robot plans a path from point A to B that takes it near a series of landmarks in order to mitigate

localisation difficulties. This type of explicit reasoning about the effect that trajectories will have on

the quality of localisation requires a multiple hypothesis representation.

One of the fundamental disadvantages of the multiple hypothesis approaches involves decision-

making. If the robot represents its position as a region or set of possible positions, then how shall it

decide what to do next? Figure 5.11 provides an example. At position 3, the robot’s belief state is

distributed among 5 hallways separately. If the goal of the robot is to travel down one particular

hallway, then given this belief state what action should the robot choose?

The challenge occurs because some of the robot’s possible positions imply a motion trajectory that

is inconsistent with some of its other possible positions. One approach that we will see in the case

studies below is to assume, for decision-making purposes, that the robot is physically at the most

probable location in its belief state, then to choose a path based on that current position. But this

approach demands that each possible position have an associated probability.

In general, the right approach to such a decision-making problems would be to decide on trajectories

that eliminate the ambiguity explicitly. But this leads us to the second major disadvantage of

the multiple hypothesis approaches. In the most general case, they can be computationally very

expensive. When one reasons in a three dimensional space of discrete possible positions, the number

of possible belief states in the single hypothesis case is limited to the number of possible positions in

the 3D world. Consider this number to be N. When one moves to an arbitrary multiple hypothesis

representation, then the number of posN sible belief states is the power set of N, which is far

larger: 2 . Thus explicit reasoning about the possible trajectory of the belief state over time quickly

becomes computationally untenable as the size of the environment grows. There are, however,

specific forms of multiple hypothesis representations that are somewhat more constrained, thereby

avoiding the computational explosion while allowing a limited type of multiple hypothesis belief.

For example, if one assumes a Gaussian distribution of probability centered at a single position,

then the problem of representation and tracking of belief becomes equivalent to Kalman Filtering,

a straightforward mathematical process described below. Alternatively, a highly tessellated map

representation combined with a limit of 10 possible positions in the belief state, results in a discrete

update cycle that is, at worst, only 10x more computationally expensive than single hypothesis belief

update.

In conclusion, the most critical benefit of the multiple hypothesis belief state is the ability to maintain

a sense of position while explicitly annotating the robot’s uncertainty about its own position. This

powerful representation has enabled robots with limited sensory information to navigate robustly in

an array of environments, as we shall see in the case studies below.

Robotics Page 17

Chapter1 Mobile Robot Localisation D. T. McGuiness, PhD

1.5 Representing Maps

The problem of representing the environment in which an AMR moves is a dual of the problem of

representing the robot’s possible position or positions. Decisions made regarding the environmental

representation can have impact on the choices available for robot position representation.

Often the fidelity of the position representation is bounded by the fidelity of the map.

There are three (3) fundamental relationships which must be understood when choosing a particular

map representation:

1. The precision of the map must appropriately match the precision with which the robot needs

to achieve its goals.

2. The precision of the map and the type of features represented must match the precision and

data types returned by the robot’s sensors.

3. The complexity of the map representation has direct impact on the computational complexity

of reasoning about mapping, localisation and navigation.

Using the aforementioned criteria, we identify and discuss critical design choices in creating a map

representation. Each such choice has great impact on the relationships, and on the resulting robot

localisation architecture. As we will see, the choice of possible map representations is broad, if

not expansive. Selecting an appropriate representation requires understanding all of the trade-offs

inherent in that choice as well as understanding the specific context in which a particular AMR

implementation must perform localisation.

Figure 1.8: The presented robot-centric mapping framework enables mobile robots to create consistent elevation maps of the terrain.
Mapping does not necessarily need to be done only in 2D as robots which will be used in outdoor environment would need
the height of the map as well [fankhauser2018probabilistic].

Page 18 Robotics

1.5 Representing Maps

1.5.1 Continuous Representation

A continuous-valued map is one method for exact decomposition of the environment. The position

of environmental features can be mapped precisely in continuous space.

AMR implementations to date use continuous maps only in two (2) dimensional representa-

tions, as increasing the number of dimensions can result in high computational load on the

AMR navigation computer.

A common approach is to combine the exactness of a continuous representation with the compactness

of the closed world assumption. This means that one assumes the representation will specify all

environmental objects in the map, and that any area in the map which is devoid of objects has no

objects in the corresponding portion of the environment. Therefore, the total storage needed in the

map is proportional to the density of objects in the environment, and a sparse environment can be

represented by a low-memory map.

One example of such a representation, shown in Fig. 1.9, is a 2D representation in which polygons

represent all obstacles in a continuos-valued coordinate space. This is similar to the method used

by Latombe [5, 113] and others to represent environments for AMR path planning techniques. In

the case of [5, 113], most of the experiments are in fact simulations run exclusively within the

computer’s memory. Therefore, no real effort would have been expended to attempt to use sets of

polygons to describe a real-world environment, such as a park or office building.

Figure 1.9: A continous representation using polygons as environmental obstacles.

In other work in which real environments must be captured by the maps, there seems to be a

trend towards selectivity and abstraction. The human map-maker tends to capture on the map, for

localisation purposes, only objects that can be detected by the robot’s sensors and, furthermore,

only a subset of the features of real-world objects.

Robotics Page 19

Chapter1 Mobile Robot Localisation D. T. McGuiness, PhD

It should be immediately apparent that geometric maps can capably represent the physical

locations of objects without referring to their texture, colour, elasticity, or any other such

secondary features that do not related directly to position and space.

In addition to this level of abstraction, an AMR map can further reduce memory usage by capturing

only aspects of object geometry which are immediately relevant to localisation. For example all

objects may be approximated using very simple convex polygons,1515A convex polygon is any
shape that has all interior
angles that measure less

than 180 degrees

sacrificing map felicity for the

sake of computational speed.

One excellent example involves line extraction. Many indoor AMR rely upon laser range-finding

devices to recover distance readings to nearby objects. Such robots can automatically extract best-fit

lines from the dense range data provided by thousands of points of laser strikes. Given such a line

extraction sensor, an appropriate continuous mapping approach is to populate the map with a set of

infinite lines. The continuous nature of the map guarantees that lines can be positioned at arbitrary

positions in the plane and at arbitrary angles. The abstraction of real environmental objects such as

walls and intersections captures only the information in the map representation that matches the

type of information recovered by the AMR’s rangefinding sensor.

Figure 1.10: Example of a continuous-valued line representation of EPFL. left: real map right: representation with a set of infinite
lines.

Fig. 1.10 shows a map of an indoor environment at EPFL using a continuous line representation.

Note that the only environmental features captured by the map are straight lines, such as those

found at corners and along walls. This represents not only a sampling of the real world of richer

features, but also a simplification, for an actual wall may have texture and relief that is not captured

by the mapped line. The impact of continuos map representations on position representation is

primarily positive. In the case of single hypothesis position representation, that position may be

specified as any continuous-valued point in the coordinate space, and therefore extremely high

accuracy is possible. In the case of multiple hypothesis position representation, the continuous map

enables two types of multiple position representation. In one case, the possible robot position may

be depicted as a geometric shape in the hyperplane, such that the robot is known to be within the

bounds of that shape. This is shown in Figure 5.30, in which the position of the robot is depicted

by an oval bounding area. Yet, the continuous representation does not disallow representation of

position in the form of a discrete set of possible positions. For instance, in [111] the robot position

belief state is captured by sampling nine continuous-valued positions from within a region near the

robot’s best known position. This algorithm captures, within a continuous space, a discrete sampling

of possible robot positions. In summary, the key advantage of a continuous map representation is

Page 20 Robotics

1.5 Representing Maps

the potential for high accuracy and expressiveness with respect to the environmental configuration

as well as the robot position within that environment. The danger of a continuous representation

is that the map may be computationally costly. But this danger can be tempered by employing

abstraction and capturing only the most relevant environmental features. Together with the use of

the closed world assumption, these techniques can enable a continuous-valued map to be no more

costly, and sometimes even less costly, than a standard discrete representation.

1.5.2 Decomposition Methods

In previous section, we discussed one method of simplification, in which the continuous map

representation contains a set of infinite lines which approximate real-world environmental lines based

on a two-dimensional slice of the world.

Basically this transformation from the real world to the map representation is a filter that

removes all non-straight data and furthermore extends line segment data into infinite lines

that require fewer parameters.

A more dramatic form of simplification is abstraction:

a general decomposition and selection of environmental features.

In this section, we explore decomposition as applied in its more extreme forms to the question of

map representation. Why would one radically decompose the real environment during the design of

a map representation? The immediate disadvantage of decomposition and abstraction is the loss of

fidelity between the map and the real world. Both qualitatively, in terms of overall structure, and

quantitatively, in terms of geometric precision, a highly abstract map does not compare favourably

to a high-fidelity map.

Despite this disadvantage, decomposition and abstraction may be useful if the abstraction can be

planned carefully so as to capture the relevant, useful features of the world while discarding all other

features. The advantage of this approach is that the map representation can potentially be minimised.

Furthermore, if the decomposition is hierarchical, such as in a pyramid of recursive abstraction, then

reasoning and planning with respect to the map rep- resentation may be computationally far superior

to planning in a fully detailed world model.

A standard, lossless form of opportunistic decomposition is termed exact cell decomposition. This

method, introduced by [5], achieves decomposition by selecting boundaries between discrete cells

based on geometric criticality.

Figure 5.14 depicts an exact decomposition of a planar workspace populated by polygonal obstacles.

The map representation tessellates the space into areas of free space. The representation can be

extremely compact because each such area is actually stored as a single node, shown in the graph at

the bottom of Figure 5.14.

Robotics Page 21

Chapter1 Mobile Robot Localisation D. T. McGuiness, PhD

The underlying assumption behind this decomposition is that the particular position of a robot within

each area of free space does not matter. What matters is the robot’s ability to traverse from each

area of free space to the adjacent areas. Therefore, as with other representations we will see, the

resulting graph captures the adjacency of map locales. If indeed the assumptions are valid and the

robot does not care about its precise position within a single area, then this can be an effective

representation that nonetheless captures the connectivity of the environment.

Such an exact decomposition is not always appropriate. Exact decomposition is a function of the

particular environment obstacles and free space. If this information is expensive to collect or even

unknown, then such an approach is not feasible.

An alternative is fixed decomposition, in which the world is tessellated, transforming the continuos

real environment into a discrete approximation for the map. Such a transforma- tion is demonstrated

in Figure 5.15, which depicts what happens to obstacle-filled and free areas during this transformation.

The key disadvantage of this approach stems from its in- exact nature. It is possible for narrow

passageways to be lost during such a transformation, as shown in Figure 5.15. Formally this

means that fixed decomposition is sound but not complete. Yet another approach is adaptive cell

decomposition as presented in Figure 5.16.

The concept of fixed decomposition is extremely popular in AMRics; it is perhaps the single most

common map representation technique currently utilised. One very popular

version of fixed decomposition is known as the occupancy grid representation [91]. In an occupancy

grid, the environment is represented by a discrete grid, where each cell is either filled (part of an

obstacle) or empty (part of free space). This method is of particular value when a robot is equipped

with range-based sensors because the range values of each sensor, combined with the absolute

position of the robot, can be used directly to update the filled/ empty value of each cell. In the

occupancy grid, each cell may have a counter, whereby the value 0 indicates that the cell has not

been "hit" by any ranging measurements and, therefore, it is likely free space. As the number of

ranging strikes increases, the cell’s value is incremented and, above a cer- tain threshold, the cell is

deemed to be an obstacle. By discounting the values of cells over time, both hysteresis and the

possibility of transient obstacles can be represented using this occupancy grid approach. Figure 5.17

depicts an occupancy grid representation in which the darkness of each cell is proportional to the

value of its counter. One commercial robot that uses a standard occupancy grid for mapping and

navigation is the Cye robot [112].

There remain two main disadvantages of the occupancy grid approach. First, the size of the map

in robot memory grows with the size of the environment and, if a small cell size is used, this size

can quickly become untenable. This occupancy grid approach is not compatible with the closed

world assumption, which enabled continuous representations to have poten- tially very small memory

requirements in large, sparse environments. In contrast, the occu- pancy grid must have memory

set aside for every cell in the matrix. Furthermore, any fixed decomposition method such as this

imposes a geometric grid on the world a priori, regard- less of the environmental details. This can be

inappropriate in cases where geometry is not the most salient feature of the environment. For these

Page 22 Robotics

1.5 Representing Maps

reasons, an alternative, called topological decomposition, has been the subject of some exploration

in AMRics. Topological approaches avoid direct measurement of geometric environmental qualities,

instead concentrating on characteristics of the environ- ment that are most relevant to the robot

for localisation. Formally, a topological representation is a graph that specifies two things: nodes

and the connectivity between those nodes. Insofar as a topological representation is intended for the

use of a AMR, nodes are used to denote areas in the world and arcs are used to denote adjacency of

pairs of nodes. When an arc connects two nodes, then the robot can traverse from one node to

the other without requiring traversal of any other intermediary node. Adjacency is clearly at the

heart of the topological approach, just as adjacency in a cell de- composition representation maps to

geometric adjacency in the real world. However, the topological approach diverges in that the nodes

are not of fixed size nor even specifications of free space. Instead, nodes document an area based

on any sensor discriminant such that the robot can recognise entry and exit of the node. Figure

5.18 depicts a topological representation of a set of hallways and offices in an indoor

environment. In this case, the robot is assumed to have an intersection detector, perhaps us- ing

sonar and vision to find intersections between halls and between halls and rooms. Note that nodes

capture geometric space and arcs in this representation simply represent connec- tivity. Another

example of topological representation is the work of Dudek [49], in which the goal is to create

a AMR that can capture the most interesting aspects of an area for human consumption. The

nodes in Dudek’s representation are visually striking locales rather than route intersections. In

order to navigate using a topological map robustly, a robot must satisfy two constraints. First, it

must have a means for detecting its current position in terms of the nodes of the to- pological

graph. Second, it must have a means for traveling between nodes using robot mo- tion. The

node sizes and particular dimensions must be optimised to match the sensory discrimination of

the AMR hardware. This ability to "tune" the representation to the robot’s particular sensors can

be an important advantage of the topological approach. How- ever, as the map representation

drifts further away from true geometry, the expressiveness of the representation for accurately

and precisely describing a robot position is lost. Therein lies the compromise between the discrete

cell-based map representations and the topological representations. Interestingly, the continuous map

representation has the potential to be both compact like a topological representation and precise as

with all direct geometric rep- resentations. Yet, a chief motivation of the topological approach is that

the environment may contain im- portant non-geometric features - features that have no ranging

relevance but are useful for localisation. In Chapter 4 we described such whole-image vision-based

features. In contrast to these whole-image feature extractors, often spatially localised landmarks

are artificially placed in an environment to impose a particular visual-topological connectivity upon

the environment. In effect, the artificial landmark can impose artificial structure. Ex- amples of

working systems operating with this landmark-based strategy have also demon- strated success.

Latombe’s landmark-based navigation research 89 has been implemented on real-world indoor AMRs

that employ paper landmarks attached to the ceiling as the locally observable features. Chips

the museum robot is another robot that uses man- made landmarks to obviate the localisation

problem. In this case, a bright pink square serves as a landmark with dimensions and color signature

that would be hard to accidentally repro- duce in a museum environment [88]. One such museum

landmark is shown in Figure (5.19). In summary, range is clearly not the only measurable and useful

Robotics Page 23

Chapter1 Mobile Robot Localisation D. T. McGuiness, PhD

environmental value for a AMR. This is particularly true due to the advent of color vision as well as

laser rangefinding, which provides reflectance information in addition to range information. Choosing

a map representation for a particular AMR requires first understanding the sensors available on the

AMR and second understanding the AMR’s function- al requirements (e.g. required goal precision

and accuracy).

1.5.3 Current Challenges

Previous section describe major design decisions with regards to map representation choices. There

are, however, fundamental real-world features which AMR map representations do not work as well.

These continue to be the subject of open research, and several such challenges are described below.

The real world is dynamic. As AMRs come to work and move in the same spaces as humans, they

will encounter:

� moving people,

� cars,

� strollers, and

� transient obstacles.

This is particularly true when one considers a home setting with which domestic robots will someday

need to contend.

The map representations described previously do not, in general, have explicit methods for identifying

and distinguishing between permanent obstacles (e.g. walls, doorways, etc.) and transient obstacles

(e.g., humans, shipping packages, etc.). The current state of the art in terms of AMR sensors is

partly to blame for this shortcoming. Although vision research is rapidly advancing, robust sensors

that discriminate between moving animals and static structures from a moving reference frame are

not yet available. Furthermore, estimating the motion vector of transient objects remains a research

problem.

Usually, the assumption behind the above map representations is that all objects on the map are

effectively static. Partial success can be achieved by discounting mapped objects over time. For

example, occupancy grid techniques can be more robust to dynamic settings by introducing temporal

discounting, effectively treating transient obstacles as noise. The more challenging process of map

creation is particularly fragile to environment dynamics; most mapping techniques generally require

that the environment be free of moving objects during the mapping process. One exception to this

limitation involves topological representations. Because precise geometry is not important, transient

objects have little effect on the map- ping or localisation process, subject to the critical constraint

that the transient objects must not change the topological connectivity of the environment. Still,

neither the occupancy grid representation nor a topological approach is actively recognizing and

Page 24 Robotics

1.5 Representing Maps

representing transient objects as distinct from both sensor error and permanent map features.

As vision sensing provides more robust and more informative content regarding the transience and

motion details of objects in the world, researchers will in time propose representations that make

use of that information. A classic example involves occlusion by human crowds. Museum tour guide

robots16

16An Example of a museum
tour guide robot used in
the National Museum of
Korea [yonhap2018].

generally suffer from an extreme amount of occlusion. If the robot’s sensing suite is located

along the robot’s body, then the robot is effectively blind when a group of human visitors completely

surrounds the robot. This is because its map contains only environment features that are, at that

point, fully hidden from the robot’s sensors by the wall of people. In the best case, the robot should

recognise its occlusion and make no effort to localise using these invalid sensor readings. In the

worst case, the robot will localise with the fully occluded data, and will update its location incorrectly.

A vision sensor that can discriminate the local conditions of the robot (e.g. we are surrounded by

people) can help eliminate this error mode.

A second open challenge in AMR localisation involves the traversal of open spaces. Existing

localisation techniques generally depend on local measures such as range, thereby demanding

environments that are somewhat densely filled with objects that the sensors can detect and measure.

Wide open spaces such as parking lots, fields of grass and indoor open-spaces such as those found

in convention centres or expos pose a difficulty for such systems due to their relative sparseness.

Indeed, when populated with humans, the challenge is exacerbated because any mapped objects are

almost certain to be occluded from view by the people.

Once again, more recent technologies provide some hope for overcoming these limitations. Both

vision and state-of-the-art laser range-finding devices offer outdoor performance with ranges of up

to a hundred meters and more. Of course, GPS performs even better. Such long-range sensing may

be required for robots to localise using distant features.

This trend teases out a hidden assumption underlying most topological map representations. Usually,

topological representations make assumptions regarding spatial locality:

a node contains objects and features that are themselves within that node.

The process of map creation therefore involves making nodes which are, in their own self-contained

way, recognizable by virtue of the objects contained within the node. Therefore, in an indoor

environment, each room can be a separate node. This is a reasonable assumption as each room will

have a layout and a set of belongings that are unique to that room.

However, consider the outdoor world of a wide-open park.

Where should a single node end and the next node begin?

The answer is unclear as objects which are far away from the current node, or position, can give

information for the localisation process. For example, the hump of a hill at the horizon, the position

of a river in the valley and the trajectory of the Sun all are non-local features that have great bearing

on one’s ability to infer current position.

Robotics Page 25

Chapter1 Mobile Robot Localisation D. T. McGuiness, PhD

The spatial locality assumption is violated and, instead, replaced by a visibility criterion:

the node or cell may need a mechanism for representing objects that are measur-

able and visible from that cell.

Once again, as sensors and outdoor locomotion mechanisms improve, there will be greater urgency

to solve problems associated with localisation in wide-open settings, with and without GPS-type

global localisation sensors.1717Of course with the use
of a GNSS, the localisation
problem may completely be

solved, however in cost
saving measures one would

wish to avoid the use of
them as they can be

expensive.

We end this section with one final open challenge that represents one of the fundamental ac- ademic

research questions of robotics: sensor fusion.

Information Sensor Fusion

A variety of measurement types are possible using off-the-shelf robot sensors, including heat, range, acoustic

and light-based reflectivity, color, texture, friction, etc. Sensor fusion is a research topic closely related to

map representation. Just as a map must embody an environment in sufficient detail for a robot to perform

localisation and reasoning, sensor fusion demands a representation of the world that is sufficiently general

and expressive that a variety of sensor types can have their data correlated appropriately, strengthening the

resulting percepts well beyond that of any individual sensor’s readings.

An implementation example implementation of sensor fusion to date is that of neural network

classifier. Using this technique, any number and any type of sensor values may be jointly combined

in a network that will use whatever means necessary to optimise its classification accuracy. For the

AMR that must use a human-readable internal map representation, no equally general sensor fusion

scheme has yet been born. It is reasonable to expect that, when the sensor fusion problem is solved,

integration of a large number of disparate sensor types may easily result in sufficient discriminatory

power for robots to achieve real-world navigation, even in wide-open and dynamic circumstances

such as a public square filled with people.

Page 26 Robotics

1.6 Probabilistic Map-Based Localisation

1.6 Probabilistic Map-Based Localisation

1.6.1 Introduction

As stated previously, multiple hypothesis position representation is advantageous because the robot

can explicitly track its own beliefs regarding its possible positions in the environment. Ideally, the

robot’s belief state will change, over time, as is consistent with its motor outputs and perceptual inputs.

One geometric approach to multiple hypothesis representation, mentioned earlier, involves identifying

the possible positions of the robot by specifying a polygon in the environmental representation [113].

This method does not provide any indication of the relative chances between various possible robot

positions. Probabilistic techniques differ from this because they explicitly identify probabilities with

the possible robot positions, and for this reason these methods have been the focus of recent research.

In the following sections we present two classes of probabilistic localisation. The first class, Markov

localisation, uses an explicitly specified probability distribution across all possible robots positions.

The second method, Kalman filter localisation, uses a Gaussian probability density representation

of robot position and scan matching for localisation. Unlike Markov localisation, Kalman filter

localisation does not independently consider each possible pose in the robot’s configuration space.

Interestingly, the Kalman filter localization process results from the Markov localisation axioms

if the robot’s position uncertainty is assumed to have a Gaussian form [28 page 43-44]. Before

discussing each method in detail, we present the general robot localisation problem and solution

strategy. Consider a AMR moving in a known environment. As it starts to move, say from a precisely

known location, it can keep track of its motion using odometry. Due to odometry uncertainty, after

some movement the robot will become very uncertain about its position (see section 5.2.4). To

keep position uncertainty from growing unbounded, the robot must localise itself in relation to its

environment map. To localise, the robot might use its on-board sensors (ultrasonic, range sensor,

vision) to make observations of its environment. The information provided by the robot’s odometry,

plus the information provided by such exteroceptive observations can be combined to enable the

robot to localise as well as possible with respect to its map. The processes of updating based on

proprioceptive sensor values and exteroceptive sensor values are often separated logically, leading to

a general two-step process for robot position update. Action update represents the application of

some action model Act to the AMR’s proprioceptive encoder measurements o and prior belief state

s to yield a new belief t t-1 state representing the robot’s belief about its current position. Note

that throughout this chapter we will assume that the robot’s proprioceptive encoder measurements

are used as the best possible measure of its actions over time. If, for instance, a differential drive

robot had motors without encoders connected to its wheels and employed open-loop control, then

instead of encoder measurements the robot’s highly uncertain estimates of wheel spin would need to

be incorporated. We ignore such cases and therefore have a simple formula:

s ′t = Act
(
o t, s t−1

)
(1.1)

Perception update represents the application of some perception model See to the AMR’s extero-

ceptive sensor inputs i and updated belief state s’ to yield a refined belief tt state representing the

Robotics Page 27

Chapter1 Mobile Robot Localisation D. T. McGuiness, PhD

robot’s current position:

s t = See
(
i t, s

′
t−1

)
(1.2)

The perception model See and sometimes the action model Act are abstract functions of

both the map and the robot’s physical configuration.1818such as sensors and their
positions, kinematics, etc.

In general, the action update process contributes uncertainty to the robot’s belief about position:

encoders have error and therefore motion is somewhat nondeterministic.

In contrast, perception update generally refines the belief state. Sensor measurements, when

compared to the robot’s environmental model, tend to provide clues regarding the robot’s possible

position.

In the case of Markov localisation, the robot’s belief state is usually represented as separate probability

assignments for every possible robot pose in its map. The action update and perception update

processes must update the probability of every cell in this case. Kalman filter localisation represents

the robot’s belief state using a singe, well-defined Gaussian probability density function, and therefore

retains just a µ and σ parameterisation of the robot’s belief about position with respect to the

map. Updating the parameters of the Gaussian distribution is all that is required. This fundamental

difference in the representation of belief state leads to the following advantages and disadvantages

of the two (2) methods, as presented in [brock1999high]:

� Markov localization allows for localization starting from any unknown position and can thus

recover from ambiguous situations because the robot can track multiple, completely disparate

possible positions. However, to update the probability of all positions within the whole state

space at any time requires a discrete representation of the space (grid). The required memory

and computational power can thus limit precision and map size.

� Kalman filter localization tracks the robot from an initially known position and is inherently

both precise and efficient. In particular, Kalman filter localization can be used in continuous

world representations. However, if the uncertainty of the robot becomes too large (e.g. due

to a robot collision with an object) and thus not truly un- imodal, the Kalman filter can fail to

capture the multitude of possible robot positions and can become irrevocably lost.

Improvements are achieved or proposed by either only updating the state space of interest within

the Markov approach [borensteinfast] or by combining both methods to create a hybrid localization

system [brock1999high].

We will now look at them in great detail.

Page 28 Robotics

1.6 Probabilistic Map-Based Localisation

1.6.2 Markov Localisation

Markov localization tracks the robot’s belief state using an arbitrary probability density function to

represent the robot’s position. In practice, all known Markov localization systems implement this

generic belief representation by first tessellating the robot configuration space into a finite, discrete

number of possible robot poses in the map. In actual applications, the number of possible poses can

range from several hundred positions to millions of positions.

Given such a generic conception of robot position, a powerful update mechanism is required that can

compute the belief state that results when new information (e.g. encoder values and sensor values)

is incorporated into a prior belief state with arbitrary probability density. The solution is born out of

probability theory, and so the next section describes the foundations of probability theory that apply

to this problem, notably Bayes formula. Then, two subse- quent subsections provide case studies,

one robot implementing a simple feature-driven to- pological representation of the environment

[brooks1986robust], and the other using a geometric grid-based map [borensteinfast].

Application of Probability for Localisation

Given a discrete representation of robot positions, to express a belief state we wish to assign to

each possible robot position a probability that the robot is indeed at that position.

From probability theory we use the term P (A) to denote the probability that A is true. This is also

called the prior probability of A because it measures the probability that A is true independent of

any additional knowledge we may have.

For example we can use P
(
r t = l

)
to t denote the prior probability that the robot r is at

position l at time t.

In practice, we wish to compute the probability of each individual robot position given the encoder

and sensor evidence the robot has collected. For this, we use the term P
(
A|B

)
to denote the

conditional probability of A given that we know B.

For example, we use P
(
r t = l |i t

)
to denote the probability that the robot is at position l

given that the robot’s sensor inputs i .

The question is,

how can a term such as P
(
r t = l |i t

)
be simplified to its constituent parts so that it can

be computed?

The answer lies in the product rule, which states:

P (A ∧ B) = P
(
A|B

)
P (B) (1.3)

Robotics Page 29

Chapter1 Mobile Robot Localisation D. T. McGuiness, PhD

The equation given in Eq. (1.3) is relatively straightforward, as the probability of both A and1919To simplify notation we

will be using the wedge (∧)
symbol to denote AND,

and the vee (∨) symbol to
denote OR.

B

being true is being related to B being true and the other being conditionally true. But you should be

able to convince yourself that the alternate equation is equally correct:

P (A ∧ B) = P
(
B|A

)
P (A) (1.4)

Using both Eq. (1.3) and Eq. (1.4) together, we can derive Bayes formula for computing P
(
A|B

)
:

P
(
A|B

)
=
P
(
B|A

)
P (A)

P (B)
(1.5)

We use Bayes rule to compute the robot’s new belief state as a function of its sensory inputs and its

former belief state. But to do this properly, we must recall the basic goal of the Markov localisation

approach:

a discrete set of possible robot positions L are represented.

The belief state of the robot must assign a probability P
(
r t = l

)
for each location l in L.

The See function described in Eq. (1.2) expresses a mapping from a belief state and sensor input to

a refined belief state. To do this, we must update the probability associated with each position l in

L, and we can do this by directly applying Bayes formula to every such l .

In denoting this, we will stop representing the temporal index t for simplicity and will further use

P (l) to mean P (r = l):

P
(
l |i
)
=
P
(
i |l
)
P (l)

P (i)
(1.6)

The value of P
(
l |i
)

is key to Eq. (1.6), and this probability of a sensor input at each robot position

must be computed using some model. An obvious strategy would be to consult the robot’s map,

identifying the probability of particular sensor readings with each possible map position, given

knowledge about the robot’s sensor geometry and the mapped environment. The value of P (l) is

easy to recover in this case. It is simply the probability P (r = l) associated with the belief state

before the perceptual update process.

Finally, note that the denominator P (i) does NOT depend upon l ; that is, as we apply Eq. (1.6)

to all positions l in L, the denominator never varies.

Because it is effectively constant, in practice this denominator is usually dropped and, at the

end of the perception update step, all probabilities in the belief state are re-normalized to

sum at 1.0.

Now consider the Act function of Eq. (1.1). Act maps a former belief state and encoder measurement

(i.e. robot action) to a new belief state. To compute the probability of position l in the new belief

state, one must integrate over all the possible ways in which the robot may have reached l according

Page 30 Robotics

1.6 Probabilistic Map-Based Localisation

to the potential positions expressed in the former belief state. This is subtle but fundamentally

important. The same location l can be reached from multiple source locations with the same encoder

measurement o because the encoder measurement is uncertain. Temporal indices are required in

this update equation:

P
(
l t|o t

)
=

∫
P
(
l t|l ′t−1, o t

)
P
(
l ′t−1

)
dl ′t−1 (1.7)

Thus, the total probability for a specific position l is built up from the individual contribu- tions from

every location l’ in the former belief state given encoder measurement o. Equations 5.21 and 5.22

form the basis of Markov localization, and they incorporate the Markov assumption. Formally, this

means that their output is a function only of the robot’s previous state and its most recent actions

(odometry) and perception. In a general, non- Markovian situation, the state of a system depends

upon all of its history. After all, the value of a robot’s sensors at time t do not really depend only

on its position at time t. They depend to some degree on the trajectory of the robot over time;

indeed on the entire history of the robot. For example, the robot could have experienced a serious

collision recently that has biased the sensor’s behavior. By the same token, the position of the robot

at time t does not really depend only on its position at time t-1 and its odometric measurements.

Due to its history of motion, one wheel may have worn more than the other, causing a left-turning

bias over time that affects its current position. So the Markov assumption is, of course, not a valid

assumption. However the Markov as- sumption greatly simplifies tracking, reasoning and planning

and so it is an approximation that continues to be extremely popular in mobile robotics.

Application: Markov Localisation using a Topological Map

A straightforward application of Markov localization is possible when the robot’s environ- ment

representation already provides an appropriate decomposition. This is the case when the environment

representation is purely topological.

Consider a contest in which each robot is to receive a topological description of the environ- ment.

The description would describe only the connectivity of hallways and rooms, with no mention of

geometric distance. In addition, this supplied map would be imperfect, contain- ing several false

arcs (e.g. a closed door). Such was the case for the 1994 AAAI National Robot Contest, at which

each robot’s mission was to use the supplied map and its own sen- sors to navigate from a chosen

starting position to a target room.

Dervish20

20.

, the winner of this contest, employed probabilistic Markov localization and used just this

multiple hypothesis belief state over a topological environmental representation. We now describe

Dervish as an example of a robot with a topological representation and a probabilistic localization

algorithm.

Dervish, shown in Figure 5.20, includes a sonar arrangement custom-designed for the 1994 AAAI

National Robot Contest. The environment in this contest consisted of a rectilinear indoor office

space filled with real office furniture as obstacles. Traditional sonars are ar- ranged radially around

the robot in a ring. Robots with such sensor configurations are sub- ject to both tripping over short

objects below the ring and to decapitation by tall objects (such as ledges, shelves and tables) that

Robotics Page 31

Chapter1 Mobile Robot Localisation D. T. McGuiness, PhD

are above the ring. Dervish’s answer to this challenge was to arrange one pair of sonars diagonally

upward to detect ledges and other overhangs. In addition, the diagonal sonar pair also proved to

ably detect tables, enabling the robot to avoid wandering underneath tall tables. The remaining

sonars were clustered in sets of sonars, such that each individual transducer in the set would be at a

slightly varied angle to minimize specularity. Finally, two sonars near the robot’s base were able to

detect low obstacles such as paper cups on the floor.

We have already noted that the representation provided by the contest organizers was purely

topological, noting the connectivity of hallways and rooms in the office environment. Thus, it would

be appropriate to design Dervish’s perceptual system to detect matching perceptual events: the

detection and passage of connections between hallways and offices.

This abstract perceptual system was implemented by viewing the trajectory of sonar strikes to the

left and right sides of Dervish over time. Interestingly, this perceptual system would use time alone

and no concept of encoder value in order to trigger perceptual events. Thus, for instance, when

the robot detects a 7 to 17 cm indentation in the width of the hallway for more than one second

continuously, a closed door sensory event is triggered. If the sonar strikes jump well beyond 17 cm

for more than one second, an open door sensory event trig- gers.

Sonars have a notoriously problematic error mode known as specular reflection: when the sonar unit

strikes a flat surface at a shallow angle, the sound may reflect coherently away from the transducer,

resulting in a large overestimate of range. Dervish was able to filter such potential noise by tracking

its approximate angle in the hallway and completely sup- pressing sensor events when its angle to

the hallway parallel exceeded 9 degrees. Interest- ingly, this would result in a conservative perceptual

system that would easily miss features because of this suppression mechanism, particularly when

the hallway is crowded with ob- stacles that Dervish must negotiate. Once again, the conservative

nature of the perceptual system, and in particular its tendency to issue false negatives, would point

to a probabilistic solution to the localization problem so that a complete trajectory of perceptual

inputs could be considered.

Dervish’s environment representation was a classical topological map, identical in abstrac- tion

and information to the map provided by the contest organizers. Figure 5.21 depicts a geometric

representation of a typical office environment and the topological map for the same office environment.

One can place nodes at each intersection and in each room, re- sulting in the case of figure 5.21

with four nodes total.

Once again, though, it is crucial that one maximize the information content of the represen- tation

based on the available percepts. This means reformulating the standard topological graph shown in

Figure 5.21 so that transitions into and out of intersections may both be used for position updates.

Figure 5.22 shows a modification of the topological map in which just this step has been taken. In

this case, note that there are 7 nodes in contrast to 4. In order to represent a specific belief state,

Dervish associated with each topological node n a probability that the robot is at a physical position

within the boundaries of n: p(r = n) . t As will become clear below, the probabilistic update used by

Dervish was approximate, therefore technically one should refer to the resulting values as likelihoods

Page 32 Robotics

1.6 Probabilistic Map-Based Localisation

rather than prob- abilities.

The perception update process for Dervish functions precisely as in Equation (5.21). Per- ceptual

events are generated asynchronously, each time the feature extractor is able to rec- ognize a

large-scale feature (e.g. doorway, intersection) based on recent ultrasonic values. Each perceptual

event consists of a percept-pair (a feature on one side of the robot or two features on both sides).

Wall Closed Door Open Door Open Hallway Foyer

Nothing Detected 0.70 0.40 0.05 0.001 0.30

Closed Door Detected 0.30 0.60 0 0 0.05

Open Door Detected 0 0 0.90 0.10 0.15

Closed Hallway Detected 0 0 0.001 0.90 0.5

Table 1.1: The certainty matrix for the robot [nourbakhsh1995dervish].

Given a specific percept pair i, Equation (5.21) enables the likelihood of each possible po- sition n to

be updated using the formula:

P
(
n|i
)
= P

(
i |
)

(1.8)

The value of p(n) is already available from the current belief state of Dervish, and so the challenge

lies in computing p(i|n). The key simplification for Dervish is based upon the re- alization that,

because the feature extraction system only extracts 4 total features and be- cause a node contains

(on a single side) one of 5 total features, every possible combination of node type and extracted

feature can be represented in a 4 x 5 table. Dervish’s certainty matrix (show in Table 5.1) is just

this lookup table. Dervish makes the simplifying assumption that the performance of the feature

detector (i.e. the probability that it is correct) is only a function of the feature extracted and the

actual feature in the node. With this assumption in hand, we can populate the certainty matrix with

confidence estimates for each possible pairing of perception and node type. For each of the five

world fea- tures that the robot can encounter (wall, closed door, open door, open hallway and foyer)

this matrix assigns a likelihood for each of the three one-sided percepts that the sensory sys- tem

can issue. In addition, this matrix assigns a likelihood that the sensory system will fail to issue a

perceptual event altogether (nothing detected).

For example, using the specific values in Table 5.1, if Dervish is next to an open hallway, the likelihood

of mistakenly recognizing it as an open door is 0.10. This means that for any node n that is of

type Open Hallway and for the sensor value i=Open door, p(i|n) = 0.10. Together with a specific

topological map, the certainty matrix enables straightforward com- putation of p(i|n) during the

perception update process.

For Dervish’s particular sensory suite and for any specific environment it intends to navi- gate,

humans generate a specific certainty matrix that loosely represents its perceptual con- fidence, along

Robotics Page 33

Chapter1 Mobile Robot Localisation D. T. McGuiness, PhD

with a global measure for the probability that any given door will be closed versus opened in the real

world.

Recall that Dervish has no encoders and that perceptual events are triggered asynchronously by the

feature extraction processes. Therefore, Dervish has no action update step as depicted by Equation

(5.22). When the robot does detect a perceptual event, multiple perception up- date steps will need

to be performed in order to update the likelihood of every possible robot position given Dervish’s

former belief state. This is because there is often a chance that the robot has traveled multiple

topological nodes since its previous perceptual event (i.e. false negative errors). Formally, the

perception update formula for Dervish is in reality a combi- nation of the general form of action

update and perception update. The likelihood of posi- tion n given perceptual event i is calculated

as in Equation (5.22):

P
(
l t|o t

)
=

∫
P
(
l t|l ′t−1, o t

)
P
(
l ′t−1

)
dl ′t−1 (1.9)

The value of p(n’) denotes the likelihood of Dervish being at position n’ as represented by Dervish’s

former belief state. The temporal subscript t-i is used in lieu of t-1 because for each possible position

n’ the discrete topological distance from n’ to n can vary depending on the specific topological

map. The calculation of p(n n’ , i) is performed by multi- tt-it plying the probability of generating

perceptual event i at position n by the probability of hav- ing failed to generate perceptual events at

all nodes between n’ and n:

For example (figure 5.23), suppose that the robot has only two nonzero nodes in its belief state,

1-2, 2-3, with likelihoods associated with each possible position: p(1-2) = 1.0 and p(2-3) = 0.2.

For simplicity assume the robot is facing East with certainty. Note that the likelihoods for nodes

1-2 and 2-3 do not sum to 1.0. These values are not formal probabil- ities, and so computational

effort is minimized in Dervish by avoiding normalization alto- gether. Now suppose that a perceptual

event is generated: the robot detects an open hallway on its left and an open door on its right

simultaneously. State 2-3 will progress potentially to states 3, 3-4 and 4. But states 3 and 3-4

can be elimi- nated because the likelihood of detecting an open door when there is only wall is

zero. The likelihood of reaching state 4 is the product of the initial likelihood for state 2-3, 0.2, the

like- lihood of not detecting anything at node 3, (a), and the likelihood of detecting a hallway on

the left and a door on the right at node 4, (b). Note that we assume the likelihood of detecting

nothing at node 3-4 is 1.0 (a simplifying approximation). (a) occurs only if Dervish fails to detect

the door on its left at node 3 (either closed or open), [(0.6)(0.4) + (1-0.6)(0.05)], and correctly

detects nothing on its right, 0.7. (b) occurs if Dervish correctly identifies the open hallway on its

left at node 4, 0.90, and mis- takes the right hallway for an open door, 0.10. The final formula,

(0.2)[(0.6)(0.4)+(0.4)(0.05)](0.7)[(0.9)(0.1)], yields a likelihood of 0.003 for state 4. This is a

partial result for p(4) following from the prior belief state node 2-3. Turning to the other node in

Dervish’s prior belief state, 1-2 will potentially progress to states 2, 2-3, 3, 3-4 and 4. Again, states

2-3, 3 and 3-4 can all be eliminated since the like- lihood of detecting an open door when a wall is

present is zero. The likelihood of state 2 is the product of the prior likelihood for state 1-2, (1.0),

the likelihood of detecting the door on the right as an open door, [(0.6)(0) + (0.4)(0.9)], and the

Page 34 Robotics

1.6 Probabilistic Map-Based Localisation

likelihood of correctly detecting an open hallway to the left, 0.9. The likelihood for being at state 2

is then (1.0)(0.4)(0.9)(0.9) = 0.3. In addition, 1-2 progresses to state 4 with a certainty factor of -6

4.3 10 , which is added to the certainty factor above to bring the total for state 4 to 0.00328. Dervish

would therefore track the new belief state to be 2, 4, assigning a very high likelihood to position 2

and a low likelihood to position 4. Empirically, Dervish’s map representation and localization system

have proven to be suffi- cient for navigation of four indoor office environments: the artificial office

environment cre- ated explicitly for the 1994 National Conference on Artificial Intelligence; the

psychology department, the history department and the computer science department at Stanford

Uni- versity. All of these experiments were run while providing Dervish with no notion of the distance

between adjacent nodes in its topological map. It is a demonstration of the power of probabilistic

localization that, in spite of the tremendous lack of action and encoder infor- mation, the robot is

able to navigate several real-world office buildings successfully.

One open question remains with respect to Dervish’s localization system. Dervish was not just a

localizer but also a navigator. As with all multiple hypothesis systems, one must ask the question,

how does the robot decide how to move, given that it has multiple possible ro- bot positions in its

representation? The technique employed by Dervish is a most common technique in the AMRics

field: plan the robot’s actions by assuming that the robot’s actual position is its most likely node in

the belief state. Generally, the most likely position is a good measure of the robot’s actual world

position. However, this technique has short- comings when the highest and second highest most

likely positions have similar values. In the case of Dervish, it nonetheless goes with the highest

likelihood position at all times, save at one critical juncture. The robot’s goal is to enter a target

room and remain there. There- fore, from the point of view of its goal, it is critical that it finish

navigating only when the robot has strong confidence in being at the correct final location. In this

particular case, Der- vish’s execution module refuses to enter a room if the gap between the most

likely position and the second likeliest position is below a preset threshold. In such a case, Dervish

will actively plan a path that causes it to move further down the hallway in an attempt to collect

more sensor data and thereby increase the relative likelihood of one position in the belief state.

Although computationally unattractive, one can go further, imagining a planning system for robots

such as Dervish for which one specifies a goal belief state rather than a goal position. The robot

can then reason and plan in order to achieve a goal confidence level, thus explic- itly taking into

account not only robot position but also the measured likelihood of each po- sition. An example of

just such a procedure is the Sensory Uncertainty Field of Latombe [90], in which the robot must

find a trajectory that reaches its goal while maximizing its lo- calization confidence enroute.

1.6.3 Kalman Filter Localisation

The Markov localization model can represent any probability density function over robot

position. This approach is very general but, due to its generality, inefficient. A successful alternative

is to use a more compact representation of a specific class of probability densi- ties. The Kalman filter

does just this, and is an optimal recursive data processing algorithm. It incorporates all information,

Robotics Page 35

Chapter1 Mobile Robot Localisation D. T. McGuiness, PhD

regardless of precision, to estimate the current value of the variable of interest. A comprehensive

introduction can be found in [46] and a more detailed treatment is presented in [28]. Figure 5.26

depicts the a general scheme of Kalman filter estimation, where the system has a control signal

and system error sources as inputs. A measuring device enables measuring some system states with

errors. The Kalman filter is a mathematical mechanism for produc- ing an optimal estimate of the

system state based on the knowledge of the system and the measuring device, the description of

the system noise and measurement errors and the un- certainty in the dynamics models. Thus the

Kalman filter fuses sensor signals and system knowledge in an optimal way. Optimality depends on

the criteria chosen to evaluate the per- formance and on the assumptions. Within the Kalman filter

theory the system is assumed to be linear and white with Gaussian noise. As we have discussed earlier,

the assumption of Gaussian error is invalid for our AMR applications but, nevertheless, the results

are extremely useful. In other engineering disciplines, the Gaussian error assumption has in some

cases been shown to be quite accurate [46]. We begin with a subsection that introduces Kalman

filter theory, then we present an appli- cation of that theory to the problem of AMR localization.

Finally, the third subsec- tion will present a case study of a AMR that navigates indoor spaces by

virtue of Kalman filter localization.

A Gentle Introduction to Kalman Filter Theory

The Kalman filter method allows multiple measurements to be incorporated optimally into a single

estimate of state. In demonstrating this, first we make the simplifying assumption that the state

does NOT change2121 i.e., we are assuming the
robot is stationary.

between the acquisition of the first and second measurement.

After presenting this static case, we can introduce dynamic prediction readily.

Static Estimation Let us assume we have taken two (2) measurements:

� one with an ultrasonic range sensor at time k , and

� one with a more precise laser range sensor at time k + 1.

Based on each measurement we are able to estimate the robot’s position.

Such an estimate derived from the first sensor measurements is q 1 and the estimate of

position based on the second measurement is q 2.

As we know each measurement can be inaccurate, we wish to modulate these position estimates

based on the expected measurement error from each sensor. Suppose we use two (2) variances(
σ 2

1 , σ
2
2
)

to predict the error associated with each measurement. We will assume a unimodal error

distribution throughout the remainder of the Kalman filter approach, which gives us the two (2)

Page 36 Robotics

1.6 Probabilistic Map-Based Localisation

robot position estimates:

q̂ 1 = q 1 with variance σ 2
1 , (1.10)

q̂ 2 = q 2 with variance σ 2
2 . (1.11)

(1.12)

So now we have two (2) measurements available to estimate the robots position. The question we

now have to answer is

How do we fuse these data to get the best estimate q̂ for the robot position?

We are assuming that there was no robot motion between time k and time k + 1, and therefore we

can directly apply the same weighted least square technique:

S =

n∑
i=1

w i
(
q̂ − q i

)2
(1.13)

with w being the weight of measurement i . To find the minimum error we set the derivative i of S

equal to zero. which gives us:

q̂ =

∑n
i=1 w iq i∑n
i=1 w i

(1.14)

Dynamic Estimation Following our previous model, we will now consider a robot which moves

between successive sensor measurements. Suppose that the motion of the robot between times k

and k + 1 is described by the velocity u and the noise w which represents the uncertainty of the

actual velocity:
dx

dt
= u + w (1.15)

If we now start at time k , knowing the variance σ 2
k of the robot position at this time and knowing

the variance σ 2
w of the motion, we obtain for the time k ′ just when the measurement is taken:

x̂
k ′ = x̂ k + u

(
t k+1 − t k

)
(1.16)

x̂
k ′ = x̂ k + u

(
t k+1 − t k

)
(1.17)

(1.18)

where ..

Kalman Filter Localisation

The Kalman filter is an optimal and efficient sensor fusion technique.

Application of the Kalman filter to localisation requires posing the robot localisation problem

as a sensor fusion problem.

Recall that the basic probabilistic update of robot belief state can be segmented into two (2) phases:

Robotics Page 37

Chapter1 Mobile Robot Localisation D. T. McGuiness, PhD

� perception update, and

� action update

The fundamental difference between the Kalman filter approach and Markov localisation approach

lies in the perception update process.

In Markov localisation, the entire perception2222i.e., the robot’s set of
instantaneous sensor

measurements.

is used to update each possible robot

position in the belief state individually using Bayes formula.

In some cases, the perception is abstract, having been produced by a feature extraction

mechanism.2323as in Dervish. In other cases, as with Rhino, the perception consists of raw sensor readings.

By contrast, perception update using a Kalman filter is a multi-step process. The robot’s total

sensory input is treated, not as a monolithic whole, but as a set of extracted features which each

relate to objects in the environment. Given a set of possible features, the Kalman filter is used to

fuse the distance estimate from each feature to a matching object in the map. Instead of carrying

out this matching process for many possible robot locations individually as in the Markov approach,

the Kalman filter accomplishes the same probabilistic update by treating the whole, unimodal and

Gaussian belief state at once. Fig. 1.11 depicts the particular schematic for Kalman filter localisation.

Figure 1.11: The schematic for the Kalman filter localisation

The first step is action update or position prediction, the straightforward application of a Gaussian

error motion model to the robot’s measured encoder travel. The robot then collects actual sensor

data and extracts appropriate features2424e.g. lines, doors, or even
the value of a specific

sensor

in the observation step. At the same time, based on its

predicted position in the map, the robot generates a measurement prediction which identifies the

features which the robot expects to find and the positions of those features. In matching the

robot identifies the best pairings between the features actually extracted during observation and the

Page 38 Robotics

1.6 Probabilistic Map-Based Localisation

expected features due to measurement prediction. Finally, the Kalman filter can fuse the information

provided by all of these matches in order to update the robot belief state in estimation.

Robotics Page 39

Chapter1 Mobile Robot Localisation D. T. McGuiness, PhD

1.7 Other Examples of Localisation Methods

Markov localisation and Kalman filter localisation have been two extremely popular strat- egies

for research AMR systems navigating indoor environments. They have strong formal bases and

therefore well-defined behavior. But there are a large number of other lo- calisation techniques that

have been used with varying degrees of success on commercial and research AMR platforms. We

will not explore the space of all localisation sys- tems in detail. Refer to surveys such as [4] for

such information. There are, however, several categories of localisation techniques that deserve

mention. Not surprisingly, many implementations of these techniques in commercial robotics employ

modifications of the robot’s environment, something that the Markov localisation and Kal- man filter

localisation communities eschew. In the following sections, we briefly identify the general strategy

incorporated by each category and reference example systems, includ- ing as appropriate those that

modify the environment and those that function without envi- ronmental modification.

1.7.1 Landmark-based Navigation

Landmarks are generally defined as passive objects in the environment which provide a high degree

of localisation accuracy when they are within the robot’s field of view. Mobile robots that make use

of landmarks for localisation generally use artificial markers that have been placed by the robot’s

designers to make localisation easy.

The control system for a landmark-based navigator consists of two (2) discrete phases.

� When a landmark is in view, the robot localizes frequently and accurately, using action update

and perception update to track its position without cumulative error.

� when the robot is in no landmark “zone”, then only action update occurs, and the robot

accumulates position uncertainty until the next landmark enters the robot’s field of view.

The robot is thus effectively dead-reckoning from landmark zone to landmark zone. This in turn

means the robot must consult its map carefully, ensuring that each motion between landmarks is

sufficiently short, given its motion model, that it will be able to localize successful upon reaching the

next landmark.

Fig. 1.12 shows one instantiating of landmark-based localisation. The particular shape of the

landmarks enables reliable and accurate pose estimation by the robot, which must travel using dead

reckoning between the landmarks.

One key advantage of the landmark-based navigation approach is that a strong formal theory has

been developed for this general system architecture [113]. In this work, the authors have shown

precise assumptions and conditions which, when satisfied, guarantee that the robot will always be

able to localize successfully. This work also led to a real-world demonstration of landmark-based

localisation. Standard sheets of paper were placed on the ceiling of the Robotics Laboratory at

Page 40 Robotics

1.7 Other Examples of Localisation Methods

Figure 1.12: An illustration showing the object-level landmarks in blue-boxes. (a,b) shows two different indoor scenarios. The blue
boxes represent the 3D object detection of object-level landmarks. The red dots indicate the nodes of the topological
map. The yellow lines indicate the edges of the topological map. The green curve is the feasible navigation trajectory
generated based on the proposed method [wang2022object].

Stanford University, each with a unique checkerboard pattern. A Nomadics 200 AMR was fitted with

a monochrome CCD camera aimed vertically up at the ceiling. By recognizing the paper landmarks,

which were placed approximately 2 meters apart, the robot was able to localize to within several

centimeters, then move using dead-reckoning to another landmark zone.

The primary disadvantage of landmark-based navigation is that in general it requires significant

environmental modification. Landmarks are local, and therefore a large number is usually required to

cover a large factory area or research laboratory. For example, the Robotics Laboratory at Stanford

made use of approximately 30 discrete landmarks, all affixed individually to the ceiling.

1.7.2 Globally Unique Localisation

The landmark-based navigation approach makes a strong general assumption:

when the landmark is in the robot’s field of view, localisation is essentially perfect.

One way to reach the near perfect AMR localisation is to effectively enable such an assumption to

be valid wherever the robot is located. It would be revolutionary the robot’s sensors immediately

identified its particular location, uniquely, and repeatedly.

Such a strategy for localisation is surely aggressive, but the question of whether it can be done is

primarily a question of sensor technology software. Clearly, such a localisation system would need to

use a sensor which collects a very large amount of information.

Since vision does indeed collect far more information than other sensors, it has been used as

the sensor of choice in research towards globally unique localisation.

Robotics Page 41

Chapter1 Mobile Robot Localisation D. T. McGuiness, PhD

If humans were able to look at an individual picture and identify the robot’s location in

a well-known environment, then one could argue that the information for globally unique

localisation does exist within the picture. It must simply be interpreted correctly.

One such approach has been attempted by several researchers and involves constructing one or more

image histograms to represent the information content of an image stably (see for example Figure

4.51 and Section 4.3.2.2). A robot using such an image histogramming system has been shown to

uniquely identify individual rooms in an office building as well as individual sidewalks in an outdoor

environment. However, such a system is highly sensitive to external illumination and provides only a

level of localisation resolution equal to the visual footprint of the camera optics.

The Angular histogram depicted in Figure 5.37 is another example in which the robot’s sensor values

are transformed into an identifier of location. However, due to the limited information content

of sonar ranging strikes, it is likely that two places in the robot’s environment may have angular

histograms that are too similar to be differentiated successfully.

One way of attempting to gather sufficient sonar information for global localisation is to allow the

robot time to gather a large amount of sonar data into a local evidence grid (i.e. occupancy grid)

first, then match the local evidence grid with a global metric map of the environment. In [115]

the researchers demonstrate such a system as able to localize on-thefly even as significant changes

are made to the environment, degrading the fidelity of the map. Most interesting is that the local

evidence grid represents information well enough that it can be used to correct and update the

map over time, thereby leading to a localisation system that provides corrective feedback to the

environment representation directly. This is similar in spirit to the idea of taking rejected observed

features in the Kalman filter localisation algorithm and using them to create new features in the

map.

A most promising, new method for globally unique localisation is called Mosaic-based localisation

[114]. This fascinating approach takes advantage of an environmental feature that is rarely used by

AMRs: fine-grained floor texture. This method succeeds primarily because of the recent ubiquity of

very fast processors, very fast cameras and very large storage media.

The robot is fitted with a high-quality high-speed CCD camera pointed toward the floor, ideally

situated between the robot’s wheels and illuminated by a specialized light pattern off the camera axis

to enhance floor texture. The robot begins by collecting images of the entire floor in the robot’s

workspace using this camera. Of course the memory requirements are significant, requiring a 10GB

drive in order to store the complete image library of a 300 x 300 meter area. Once the complete

image mosaic is stored, the robot can travel any trajectory on the floor while tracking its own position

without difficulty. Localisation is performed by simply re cording one image, performing action update,

then performing perception update by matching the image to the mosaic database using simple

techniques based on image database matching. The resulting performance has been impressive:

such a robot has been shown to localize repeatedly with 1mm precision while moving at 25 km/hr.

The key advantage of globally unique localisation is that, when these systems function correctly,

they greatly simplify robot navigation. The robot can move to any point and will always be assured

Page 42 Robotics

1.7 Other Examples of Localisation Methods

of localizing by collecting a sensor scan. But the main disadvantage of globally unique localisation

is that it is likely that this method will never offer a complete solution to the localisation problem.

There will always be cases where local sensory information is truly ambiguous and, therefore, globally

unique localisa- tion using only current sensor information is unlikely to succeed. Humans often have

excel- lent local positioning systems, particularly in non-repeating and well-known environments such

as their homes. However, there are a number of environments in which such immediate localisation is

challenging even for humans: consider hedge mazes and large new office buildings with repeating halls

that are identical. Indeed, the mosaic-based localisation pro- totype described above encountered

such a problem in its first implementation. The floor of the factory floor had been freshly painted

and was thus devoid of sufficient micro-fractures to generate texture for correlation. Their solution

was to modify the environment after all, painting random texture onto the factory floor.

1.7.3 Positioning Beacon systems

Figure 1.13

With most beacon systems, the design depicted depends foremost upon geometric principles to effect

localisation. In this case the robots must know the positions of the two pinger units in the global

coordinate frame in order to localize themselves to the global coordinate frame. A popular type of

beacon system in industrial robotic applications is depicted in Figure 5.39. In this case beacons are

retroreflective markers that can be easily detected by a AMR based on their reflection of energy back

to the robot. Given known positions for the optical retroreflectors, a AMR can identify its position

whenever it has three such beacons in sight simultaneously. Of course, a robot with encoders can

localize over time as well, and does not need to measure its angle to all three beacons at the same

instant. The advantage of such beacon-based systems is usually extremely high engineered reliabil-

ity. By the same token, significant engineering usually surrounds the installation of such a system in

a specific commercial setting. Therefore, moving the robot to a different factory floor will be both

time-consuming and expensive. Usually, even changing the routes used by the robot will require

serious re-engineering.

Robotics Page 43

Chapter1 Mobile Robot Localisation D. T. McGuiness, PhD

1.7.4 Route-Based Localisation

Even more reliable than beacon-based systems are route-based localisation strategies. In this case,

the route of the robot is explicitly marked so that it can determine its position, not relative to some

global coordinate frame, but relative to the specific path it is allowed to travel.25

25A perfect example for
these kind of localisation is

the traditional line
following robot. The robot

does not need to know
where it is as its only job is
to make sure the line it is

following is within its vision
[AaaravG2018].

There are many

techniques for marking such a route and the subsequent intersections.

In all cases, one is effectively creating a railway system, except the railway system is somewhat

more flexible and certainly more human-friendly actual rail.

For example, high UV-reflective, optically transparent paint can mark the route such that only the

robot, using a specialized sensor, easily detects it. Alternatively, a guide wire buried underneath the

hall can be detected using inductive coils located on the robot chassis.

In all such cases, the robot localisation problem is effectively trivialized by forcing the robot to

always follow a prescribed path. While this may remove the autonomous part of AMR, there are

industrial unmanned guided vehicles that do deviate briefly from their route in order to avoid obstacles.

Nevertheless, the cost of this extreme reliability is obvious:

the robot is much more inflexible give such localisation means, and therefore any change to

the robot’s behavior requires significant engineering and time.

Page 44 Robotics

1.8 Building Maps

1.8 Building Maps

Humans are excellent navigators due to their remarkable ability to build cognitive maps [mcnamara1989subjective]

which form the basis of spatial memory [chun1998contextual], [huang2023visual]. However, when

it comes to AMR, we unfortunately need to be more hands on.

All of the localisation strategies we have discussed previously require active human effort to install

the robot into a space. Artificial environmental modifications may be necessary to reduce ambiguity

[meyer2011using]. Even if this is not so, a map of the environment must be created for the robot.

But a robot which localizes successfully has the right sensors for detecting the environment,

and so the robot ought to build its own map.

This ambition goes to the heart of AMR. In prose, we can express our eventual goal as follows:

Starting from an arbitrary initial point, a AMR should be able to autonomously explore

the environment with its on-board sensors, gain knowledge about it, interpret the scene,

build an appropriate map and localize itself relative to this map.

While we have system which allows certain level of intelligence to robots, most applications re-

quire a connected network or a central node to achieve any autonomous action [hazik2022fleet],
[xidias2022intelligent]. Accomplishing this goal purely using internal components in a robust is

probably years away, but an important sub-goal is the invention of techniques for autonomous

creation and modification of an environment map. Of course a AMR’s sensors have only limited

range, and so it must physically explore its environment to build such a map. So, the robot must

not only create a map but it must do so while moving and localizing to explore the environment.

This is often called the Simultaneous Localisation and Mapping (SLAM) problem,26 26Computational problem
of constructing or updating
a map of an unknown
environment while
simultaneously keeping
track of an agent’s location
within it. While this initially
appears to be a chicken or
the egg problem, there are
several algorithms known
to solve it in, at least
approximately and in
reasonable time for certain
environments. Popular
solutions include the
particle filter, extended
Kalman filter, covariance
intersection, and
GraphSLAM. SLAM
algorithms are based on
concepts in computational
geometry and computer
vision, and are used in
robot navigation, robotic
mapping and odometry for
virtual reality or augmented
reality.

arguably the

most difficult problem specific to AMR systems.

Figure 1.14: 2005 DARPA Grand Challenge winner Stanley performed SLAM as part of its autonomous driving system [Kivaan2007].

The reason why SLAM is difficult is born precisely from the interaction between the robot’s position

updates as it localises and its mapping actions. If a AMR updates its position based on an observation

Robotics Page 45

Chapter1 Mobile Robot Localisation D. T. McGuiness, PhD

of an imprecisely known feature, the resulting position estimate becomes correlated with the feature

location estimate. Similarly, the map becomes correlated with the position estimate if an observation

taken from an imprecisely known position is used to update or add a feature to the map.

For localisation the robot needs to know where the features are whereas for map building

the robot needs to know where it is on the map.

The only path to a complete and optimal solution to this joint problem is to consider all the correlations

between between position estimation and feature location estimation. Such cross-correlated maps are

called stochastic maps [hashimoto2002humanoid]. Unfortunately, implementing such an optimal

solution is computationally prohibitive.

1.8.1 Stochastic Map Technique

Fig. 1.15 shows a general schematic incorporating map building and maintenance into the standard

localisation loop depicted by Figure (5.29) during discussion of Kalman filter localisation [9]. The

added arcs represent the additional flow of information that occurs when there is an imperfect match

between observations and measurement predictions.

Unexpected observations will affect the creation of new features in the map whereas unobserved

measurement predictions will affect the removal of features from the map. As discussed earlier,

each specific prediction or observation has an unknown exact value and so it is represented by a

distribution. The uncertainties of all of these quantities must be considered throughout this process.

Figure 1.15: General schematic for concurrent localization and map building.

Page 46 Robotics

1.8 Building Maps

The new type of map we are creating not only has features in it as did previous maps, but it

also has varying degrees of probability that each feature is indeed part of the environment.

We represent this new map M with a set n of probabilistic feature locations ẑ t, each with the

covariance matrix Σ t and an associated credibility factor c t between 0 and 1.

The purpose of c t is to quantify the belief in the existence of the feature in the environment

(see Fig. (5.41)):

M =

{
z t,Σ t, c t

∣∣∣ (1 5 t 5 n)} (1.19)

In contrast to the map used for Kalman filter localisation previously, the map M is NOT assumed

to be precisely known as it will be created by an uncertain robot over time. This is why the features

ẑ are described with associated covariance matrices Σ t.

Similar to Kalman filter localisation, the matching steps has three (3) outcomes in regard to

measurement predictions and observations:

� matched prediction and observations,

� unexpected observations, and

� unobserved predictions

Localisation, or the position update of the robot, proceeds as before. However, the map is also

updated now, using all three outcomes and complete propagation of all the correllated uncertainties.

The interesting concept in this modelling is the credibility factor c t , which governs the likelihood

that the mapped feature is indeed in the environment.

How should the robot’s failure to match observed features to a particular map feature

reduce that map feature’s credibility?

How should the robot’s success at matching a mapped feature increase the chance that

the mapped feature is “correct?”

As an example, in [carroll2017transformation] the following function is proposed for calculating

credibility:

c t (k) = 1− exp

(
−
(
n s
a
−
n u
b

))
(1.20)

where a and b define the learning and forgetting rate and n s and n u are the number of matched and

unobserved predictions up to time k , respectively. The update of the covariance matrix Σ t building

the feature positions and the robot’s position are strongly correlated.

Robotics Page 47

Chapter1 Mobile Robot Localisation D. T. McGuiness, PhD

This forces us to use a stochastic map, in which all cross-correlations must be updated in

each cycle.

The stochastic map consists of a stacked system state vector:

X =
[
x r (k) x 1 (k) x 2 (k) . . . x n (k)

]T
(1.21)

and a system state covariance matrix:

Σ =


C rr C r1 · · · C rn

C 1r C 11 · · · C 1n
...

...
. . .

...

C nr C n1 · · · C nn

 (1.22)

where the index r stands for the robot and the index i = 1 to n for the features in the map.

In contrast to localization based on an a priori accurate map, in the case of a stochastic map the

cross-correlations must be maintained and updated as the robot is performing automatic map-building.

During each localization cycle, the cross-correlations robot-to-feature and feature-to-robot are also

updated. In short, this optimal approach requires every value in the map to depend on every other

value, and therein lies the reason that such a complete solution to the automatic mapping problem

is beyond the reach of even today’s computational resources.

1.8.2 Other Mapping Techniques

The AMR research community has spent significant research effort on the problem of automatic

mapping, and has demonstrating working systems in many environments without having solved the

complete stochastic map problem described earlier.

This field of AMR research is extremely large, and this Lecture Book will NOT present a

comprehensive survey of the field

Instead, let’s look at the two (2) key considerations associated with automatic mapping, together

with brief discussions of the approaches taken by several automatic mapping solutions to overcome

these challenges.

Cyclic Environments

Possibly the single hardest challenge for automatic mapping to be conquered is to correctly map

cyclic environments. The problem is simple:

Given an environment which has one or more loops or cycles,2727Such as four (4)
hallways that intersect to

form a rectangle

create a globally consistent

map for the whole environment.

Page 48 Robotics

1.8 Building Maps

This problem is hard because of the fundamental behavior of automatic mapping systems:

The maps they create are not perfect.

And, given any local imperfection, accumulating such imperfections over time can lead to arbitrarily

large global errors between a map, at the macro level, and the real world, as shown in Fig. 1.16.

Figure 1.16: A naive, local mapping strategy with small local error leads to global maps that have a significant error, as demonstrated by
this real-world run on the left. By applying topological correction, the grid map on the right is extracted [bruce2000fast].

Such global error is usually irrelevant for AMR localisation and navigation. After all, a warped map

will still serve the robot perfectly well so long as the local error is bounded. However, an extremely

large loop still eventually returns to the same spot, and the robot must be able to note this fact in its

map. Therefore, global error does indeed matter in the case of cycles. In some of the earliest work

attempting to solve the cyclic environment problem, [116] used a purely topological representation

of the environment, reasoning that the topological representation only captures the most abstract,

most important features and avoids a great deal of irrelevant detail. When the robot arrives at

a topological node that could be the same as a previously visited and mapped node (e.g. similar

distinguishing features), then the robot postulates that it has indeed returned to the same node. To

check this hypothesis, the robot explicitly plans and moves to adjacent nodes to see if its perceptual

readings are consistent with the cycle hypothesis.

With the recent popularity of metric maps such as fixed decomposition grid representations, the cycle

detection strategy is not as straightforward. Two important features are found in most autonomous

mapping systems that claim to solve the cycle detection problem:

Robotics Page 49

Chapter1 Mobile Robot Localisation D. T. McGuiness, PhD

� First, as with many recent systems, these mobile robots tend to accumulate recent perceptual

history to create small-scale local sub-maps [nourbakhsh1997mobile]. In this approach, each

sub-map is treated as a singular sensor during the robot’s position update. The advantage of

this approach is two-fold.

– As odometry is relatively accurate over small distances, the relative registration of features

and raw sensor strikes in a local sub-map will be quite accurate.

– The robot will have created a virtual sensor system with a significantly larger horizon

than its actual sensor system’s range. In a sense, this strategy at the very least defers

the problem of very large cyclic environments by increasing the map scale that can be

handled well by the robot.

� The second recent technique for dealing with cycle environments is in fact a return to the

topological representation. Some recent automatic mapping systems will attempt to identify

cycles by associating a topology with the set of metric sub-maps, explicitly identifying the

loops first at the topological level.

One could certainly imagine other augmentations based on known topological methods.

For example, the globally unique localisation methods described previously could be used to

identify topological correctness.

Dynamic Environments

A second challenge extends NOT just to existing autonomous mapping solutions but even to the

basic execution of the stochastic map approach.

All previously mentioned strategies tend to assume the environment is either unchanging or

changes in ways that are virtually insignificant. Such assumptions are certainly valid with

respect to some environments, such as for example the computer science department of a

university at 3:00 AM.

However, for many practical applications, this assumption is lacking at best. In the case of wide-open

spaces that are popular gathering places for humans, there is rapid change in the freespace and a

vast majority of sensor strikes represent detection of the transient humans rather than fixed surfaces

such as the perimeter wall.

Another class of dynamic environments are spaces such as factory floors and warehouses, where the

objects being stored redefine the topology of the pathways on a day-to-day basis as shipments are

moved in and out.

In all such dynamic environments, an automatic mapping system should capture the salient2828In this context, salient
means anything which is

sticking out.

objects

detected by its sensors and, furthermore, the robot should have the flexibility to modify its map as

Page 50 Robotics

1.8 Building Maps

the position of these salient objects changes.

The subject of continuous mapping, or mapping of dynamic environments is to some degree a direct

outgrowth of successful strategies for automatic mapping of unfamiliar environments.

For example, in the case of stochastic mapping using the credibility factor c t mechanism, the

credibility equation can continue to provide feedback regarding the probability of existence of various

mapped features after the initial map creation process is ostensibly complete. Therefore, a mapping

system can become a map-modifying system by simply continuing to operate.

This is most effective, of course, if the mapping system is real-time and incremental.

If map construction requires off-line global optimisation, then the desire to make small-grained,

incremental adjustments to the map is more difficult to satisfy.

Earlier we stated that a mapping system should capture only the salient objects detected by its sensors.

One common argument for handling the detection of, for instance, humans in the environment is

that mechanisms such as c t serve to be mapped in the first place.

The general solution to the problem of detecting salient features, however, requires a solution to

the perception problem in general. When a robot’s sensor system can reliably detect the difference

between a wall and a human, using for example a vision system, then the problem of mapping in

dynamic environments will become significantly more straightforward.

We have discussed just two important considerations for automatic mapping. There is still a great

deal of research activity focusing on the general map building and localisation problem. This field is

certain to produce significant new results in the next several years, and as the perceptual power of

robots improves we expect the payoff to be greatest here.

Information DARPA Grand Challenge

A prize competition for American autonomous vehicles, funded by the Defense Advanced Research Projects

Agency (DARPA). The goal of the challenge is too further DARPA’s mission to sponsor revolutionary,

high-payoff research that bridges the gap between fundamental discoveries and military use. The initial

DARPA Grand Challenge in 2004 was created to spur the development of technologies needed to create the

first fully autonomous ground vehicles capable of completing a substantial off-road course within a limited

time. The third event, the DARPA Urban Challenge in 2007, extended the initial Challenge to autonomous

operation in a mock urban environment. The 2012 DARPA Robotics Challenge, focused on autonomous

emergency-maintenance robots, and new Challenges are still being conceived. The DARPA Subterranean

Challenge was tasked with building robotic teams to autonomously map, navigate, and search subterranean

environments. Such teams could be useful in exploring hazardous areas and in search and rescue.

Robotics Page 51

Chapter1 Mobile Robot Localisation D. T. McGuiness, PhD

Figure 1.17: Stanford Racing and Victor Tango together at an intersection in the DARPA Urban Challenge Finals.

Page 52 Robotics

Chapter2
Welcome to Linux

Table of Contents

2.1 Learning the Linux Command Line . 53

2.2 Installation . 59

2.3 Docker . 60

2.1 Learning the Linux Command Line

Working with a text-based Command Line Environment (CLI), without a Graphical User Interface

(GUI) can be intimidating at first glance, as most of us are accustomed to using a GUI. But

understanding the command line environment will show how powerful and efficient it is.

C.R. 1

bash1 echo "Hello, Linux!"

text1 Hello, Linux!

Most senior programmers in the industry and veteran Linux system administrators will exclusively

use Command-Line Interface (CLI) as their day to day interaction with the computer. The reason is,

the GUI was designed for simplifying human interaction with computers rather than improving the

computer’s efficiency at doing tasks.

The goal of this chapter aims to introduce the fundamentals of working with the Linux command

line using a very common shell called Bash as it will be important in the future when working with

ROS (Robot Operating System) or in any future endeavour the reader may pursue in the fields

related to computer science.

https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/System_administrator bash
https://en.wikipedia.org/wiki/Robot_Operating_System

Chapter2 Welcome to Linux D. T. McGuiness, PhD

� Work on what the command line is and how it works,

� Look at working with files and folders,

� How Linux protects files from unauthorised access with permissions,

� Common commands to be familiar with and how to connect commands together with pipes,

� Introduction to some complex command line tasks.

This part of the lecture-book aims to give practical knowledge on working with the widely used

Bash shell, in case you choose to extend your learning into user management, network configuration,

programming and development, system administration, or if you catch the tinkerer-bug.

2.1.1 A Short History on Computer Interfaces

Figure 2.1: Hughes telegraph, an early
(1855) teleprinter built by Siemens and
Halske. The centrifugal governor to
achieve synchronicity with the other end
can be seen [Manske2009].

The CLI came from a form of dialogue by humans over teleprinter

(TTY) machines, in which human operators remotely exchanged

information instead of a human communicating with another

human over a teleprinter. Early computer systems often used

teleprinter machines as the means of interaction with a human

operator.

The computer became one end of the human-to-human

teleprinter model.

The mechanical teleprinter was then replaced by a terminal, a

keyboard and screen emulating the teleprinter. Smart terminals

permitted additional functions, such as cursor movement over the entire screen, or local editing of

data on the terminal for transmission to the computer.

Figure 2.2: Nokia Bell Labs Murray Hill,
NJ (Original)

As the microcomputer revolution replaced the traditional systems,

hardware terminals were replaced by terminal emulators - Personal

Computer (PC) software that interpreted terminal signals sent

through the PC’s serial ports. These were typically used to

interface an organisation’s new PC’s with their existing mini- or

mainframe computers, or to connect PC to PC. Some of these

PCs were running Bulletin Board System software.

Early operating system CLIs were implemented as part of resident

monitor programs, and could not easily be replaced. The first

implementation of the shell as a replaceable component was part

of the Multics time-sharing operating system. In 1964, MIT Computation Center staff member

Louis Pouzin developed the RUNCOM tool for executing command scripts while allowing argument

Page 54 Robotics

https://en.wikipedia.org/wiki/Teleprinter
https://en.wikipedia.org/wiki/Dumb_terminal\#Early_VDUs
https://en.wikipedia.org/wiki/Computer_terminal\#.22Intelligent.22_terminals
https://www.telecomreview.com/images/stories/2020/03/Nokia_Bell_Labs_achieves_world_record_in_fiber_optics-article.jpg

2.1 Learning the Linux Command Line

substitution.

Pouzin coined the term “shell” to describe the technique of using commands like a programming

language, and wrote a paper about how to implement the idea in the Multics operating system.

Pouzin returned to his native France in 1965, and the first Multics shell was developed by Glenda

Schroeder. At Nokia Bell Labs headquarters the first Unix shell, the V6 shell, was developed by

Ken Thompson in 1971 and was modelled after Schroeder’s Multics shell. The Bourne shell was

introduced in 1977 as a replacement for the V6 shell. Although it is used as an interactive command

interpreter, it was also intended as a scripting language and contains most of the features that are

commonly considered to produce structured programs.

Figure 2.3: Bourne shell interaction on Version 7 Unix (Original).

The Bourne shell led to the development of

the KornShell (ksh), Almquist shell (ash),

and the popular Bourne-again shell (or bash).

Early microcomputers themselves were based

on a CLI such as CP/M, DOS or AppleSoft

BASIC. During the 1980s and 1990s, the

introduction of the Apple Macintosh and of

Microsoft Windows on PCs saw the command

line interface as the primary user interface re-

placed by the Graphical User Interface. The

command line remained available as an alter-

native user interface, often used by system

administrators and other advanced users for system administration, computer programming and

batch processing.

Shells in other Operating Systems

Windows In November 2006, Microsoft released version 1.0 of Windows PowerShell, which combined

features of traditional Unix shells with their proprietary object-oriented .NET Framework.

MinGW and Cygwin are open-source packages for Windows that offer a Unix-like CLI. Microsoft

provides MKS Inc.’s ksh implementation MKS Korn shell for Windows through their Services

for UNIX add-on.

Macintosh Since 2001, the Macintosh operating system macOS has been based on a Unix-like

operating system called Darwin. On these computers, users can access a Unix-like CLI by

running the terminal emulator program called Terminal, or by remotely logging into the machine

using ssh. Z shell is the default shell for macOS,1 1This was implemented as
of macOS Catalina.

with bash, tcsh, and the KornShell also

provided.

Before macOS Catalina, bash was the default shell.

Robotics Page 55

https://upload.wikimedia.org/wikipedia/commons/thumb/b/bf/Version_7_UNIX_SIMH_PDP11_Kernels_Shell.png/330px-Version_7_UNIX_SIMH_PDP11_Kernels_Shell.png

Chapter2 Welcome to Linux D. T. McGuiness, PhD

2.1.2 Linux is a Nutshell

System calls

system processing

proc & sysfs
file systems

Device
Model

system run,
modules,
generic

HW access

bus drivers

buses:
PCI, USB ...

Sockets

networking

protocol
families

protocols:
TCP, UDP, IP

network
interfaces
and drivers

network:
Ethernet, WiFi ...

NFS

Processes

memory

Tasks

synchronization

Scheduler

interrupts
core,

CPU arch

CPU

memory
access

Virtual
memory

memory
mapping

logical
memory

Swap

Page
Allocator

MMU, RAM

Block
devices

and drivers

storage devices:
SCSI, NVMe ...

page
cache

storage

files and
directories

Virtual
File System

logical
filesystems:
ext3, xfs ...

char
devices

human
interface

input
subsystem

HI class
drivers

HI
peripherals
drivers

keyboard, mouse,
display, audio

functions

layers

user space
interfaces

virtual
subsystems

bridges

logical

hardware
interfaces

electronics,
hardware

Linux kernel diagram

Figure 2.4: The kernel mapping of the Linux operating system.

A Brief Description of What Linux Does

Linux is a general purpose computer operating system, originally released in 1991 by Linus Torvalds

and began as a personal project of him [koren2006study]. It was to create a new free operating

system kernel which the resulting kernel has been marked by constant growth throughout its history.2

2The MINIX logo. There
were alternative OSs on

the market such as MINIX
but it was under a

proprietary license which
was later became

open-source in 2000. This
was one of the reasons why
Linux was attempted in the

first place. To create a
truly open-source

implementation of UNIX.

Linux is defined by its kernel, called the Linux kernel, which is the core component of the system.

This kernel interacts with the computer hardware to allow software and other hardware to exchange

information, which you can see in Fig. 2.4.

Imagine the kernel as the middle-man between your software and the hardware. This allows

you to write a program without worrying to much about what the hardware is.

As Linux is an open-source project and is probably one of the greatest collaborative software work in

history, it has a rich history. It was inspired by MINIX which, in turn, was inspired by UNIX with

UNIX being the first portable operating system ever designed [bach1986design] as it was mostly

written with the C programming language [johnson1978unix].

Open Source v. Closed Source

In programming there are two (2) main approaches when it comes to sharing code:

Page 56 Robotics

2.1 Learning the Linux Command Line

� It can be closed source, which means, you are not allowed to edit the code the program is

running on,

� Open source which you are free to edit and share the code as you see fit.

Linux is based on a philosophy of software and operating systems being free.

Software should be free of cost and freely modifiable.

The software license which allows this, in the case of the Linux kernel, is called the GNU General

Public License.3 3are a series of widely
used free software licenses,
or copyleft licenses, that
guarantee end users the
freedoms to run, study,
share, or modify the
software.

This emphasis of freedom, both, of cost and modification has helped Linux to

become popular for many different applications and purposes from tinkering programming to being

used in massive databases of major companies.

Linux has popped up everywhere from the majority of the servers that run web services we all use,

to super computers, to Wi-Fi routers, in cars, mobile phones, and everywhere in between. Odds are

that you are closed to a device that uses some part of the Linux kernel. In the midst of all these

different kinds of Linux installations, the most important distinction you’ll need to be aware of is

one of the genealogy of Linux.

2.1.3 Linux Distributions

While the Linux kernel is more or less the same across nearly all installations of Linux, the software

that surrounds the kernel that provides capabilities like software package management, control of

services, and the location of configuration files differs between them. Many of the tools that come

packaged with Linux come from the GNU Project and aren’t actually a part of Linux and, taken

together, the combination of the kernel and these common tools is often referred to as GNU Linux.

Different groups of software and configuration choices that are maintained by individuals or groups

of people are called distributions, or distro’s. Most major distributions of Linux fall into categories

based on the original distribution from which they were derived. These are:4 4The entire family history
of linux can be viewed in
the Distribution Timeline

Depending the readers future work or study area, it is likely to end up learning to use the command

line on a system that inherits from one of these distributions. Most likely, it will be a distribution

derived from Debian or Red Hat. Linux Mint, Ubuntu, Elementary OS, and Kali Linux are all derived

from Debian. CentOS, Fedora, and Red Hat Enterprise Linux are derived from Red Hat.

The history of all of these different distributions of Linux is beyond the scope of this document. But,

what this means at its core is the need to be aware of what system is in use and the need to adapt

to account for differences in distributions. As we begin working with Linux, through the command

line, it will be apparent, most of what can be done is the same across the major distributions.

Robotics Page 57

https://upload.wikimedia.org/wikipedia/commons/1/1b/Linux_Distribution_Timeline.svg

Chapter2 Welcome to Linux D. T. McGuiness, PhD

Distribution Advantages Disadvantages

Linux Mint Superb collection of custom tools developed
in-house, hundreds of user-friendly enhance-
ments, inclusion of multimedia codecs, open
to users’ suggestions

The project does not issue security advisories

Ubuntu Fixed release cycle and support period; long-
term support (LTS) variants with five years
of security updates; novice-friendly; wealth
of documentation, both official and user-
contributed

Lacks compatibility with Debian; frequent ma-
jor changes tend to drive some users away;
non-LTS releases come with only nine months
of security support

Arch Linux Excellent software management infrastruc-
ture; unparalleled customisation and tweaking
options; superb on-line documentation

Occasional instability and risk of breakdown

Gentoo Highly flexible, endlessly customizable, able
to use a range of compile-time configurations,
init systems and run on many architectures

Requires a higher degree of knowledge to use,
upgrading packages via source can be time
consuming

Slackware Linux Considered highly stable, clean and largely
bug-free, strong adherence to UNIX principles

Limited number of officially supported applica-
tions; conservative in terms of base package
selection; complex upgrade procedure

Debian Very stable; remarkable quality control; in-
cludes over 30,000 software packages; sup-
ports more processor architectures than any
other Linux distribution

Conservative - due to its support for many pro-
cessor architectures, newer technologies are
not always included; slow release cycle (one
stable release every 2 - 3 years); discussions
on developer mailing lists and blogs can be
uncultured at times

Fedora Highly innovative; outstanding security fea-
tures; large number of supported packages;
strict adherence to the free software philoso-
phy; availability of live spins featuring many
popular desktop environments

Fedora’s priorities tend to lean towards enter-
prise features, rather than desktop usability;
some bleeding edge features, such as switch-
ing early to KDE 4 and GNOME 3, occasion-
ally alienate some desktop users

openSUSE Comprehensive and intuitive configuration
tool; large repository of software packages,
excellent web site infrastructure and printed
documentation, Btrfs with boot environments
by default

Its resource-heavy desktop setup and graphical
utilities are sometimes seen as “bloated and
slow”

Red Hat Long-term, commercial support of ten years
or more. Stability.

Lacks latest Linux technologies; small soft-
ware repositories; licensing restrictions

FreeBSD Fast and stable; availability of over 24,000
software applications (or "ports") for instal-
lation; very good documentation; native ZFS
support and boot environments

Tends to lag behind Linux in terms of support
for new and exotic hardware, limited availabil-
ity of commercial applications; lacks graphical
configuration tools

Table 2.1: Most popular distributions used according to distrowatch.

Page 58 Robotics

https://distrowatch.com/

2.2 Installation

2.2 Installation

There are a wide variety of ways of installing Linux on a computer. These include:

Creating a virtual environment
Allows you to install Linux within your primary Operating System (OS). There are great many

benefits to this approach as it allows you to test an experimental OS without affecting your

primary setup. It also allows you to run simple applications without leaving your primary

OS and can have various inter-operability options such as shared folder, and shared network

settings.

The disadvantages include some hit to performance as both the host and virtual OS have to

share the same pool of resources. In addition, graphically virtual ram limits are set to 256MB.

Creating a partition on your computer
and install it alongside your primary OS. This option is generally done by most people who know

what they are doing as they generally have one or two software where there is no alternative

on Linux and therefore would like to keep their primary OS for those specific software.

Using a container
One of the more popular option in recent times. The way it works is similar to that of using a

virtual machine but heavily stripped one. Basically a container houses enough components to

house an application. Think of running Linux per application instead of a full blown os.

There are many merits and demerits to using an option and in this lecture we will focus on building

a container image for both Linux programming and ROS application

Robotics Page 59

Chapter2 Welcome to Linux D. T. McGuiness, PhD

Figure 2.5: The docker logo

2.3 Docker

Docker is an open-source platform that has completely changed the way we develop, deploy, and use

apps. The application development lifecycle is a dynamic process, and developers are always looking

for ways to make it more efficient. Docker enables developers to package their work and all of its

dependencies into standardised units called containers by utilizing containerisation technology.

By separating apps from the underlying infrastructure, these lightweight containers provide reliable

performance and functionality in a variety of environments. Because of this, Docker is a game-

changer for developers because it frees them up to concentrate on creating amazing software rather

than handling difficult infrastructure.

Regardless of your level of experience, Docker provides an extensive feature set and a strong toolset

that can greatly enhance your development process. In this tutorial, we will provide you with a

thorough understanding of Docker, going over its main features, advantages, and ways to use it to

develop, launch, and distribute apps more quickly and easily.

Docker is not the only containerisation software available as there is also podman5

5The logo of the podman
software.

which is

almost compatible and is developed by RHEL.

Information Docker v. Podman

The biggest difference is the underlying architecture each is built on. Docker heavily relies on a daemon,

while Podman is daemonless. Think of a daemon as a process that runs in the background on the host OS.

In Docker’s case, its daemon is responsible for managing Docker objects66such as images and
containers

and communicating with other

systems. To run its daemon, Docker uses a package called dockerd. Daemons typically require root-level

access to the machine they run on. This lends itself to security vulnerabilities. If a bad actor can get access

to a daemon, they now have access to the entire machine.

Podman’s daemonless architecture comes with a few benefits. Since running daemons almost always requires

root privileges, a daemonless architecture can be thought of as “rootless.” This means that users who

don’t have system-level access to the machine their containers are running on can still use Podman which

isn’t always the case with Docker. Instead of a daemon, Podman uses a Linux package known as systemd.

Since systemd is native to the Linux operating system, Podman is often considered more “light-weight” than

Page 60 Robotics

2.3 Docker

Docker and will usually see faster container spin-up times than when using Docker.

2.3.1 Dockerfile

A Dockerfile is a text document in which you can lay down all the instructions you want for an image

to be created.

� The first entry in the file specifies the base image, which is a pre-made image containing all

the dependencies you need for your application.

� Then, there are commands you can send to the Dockerfile to install additional software, copy

files, or run scripts.

The result is a Docker image:

a self-sufficient, executable file with all the information needed to run an application.

Dockerfiles are an easy way to create and deploy applications. They help in creating an environment

consistently reproducibly, and in an easier way.

A Dockerfile is used to create new custom images prepared individually according to specific needs.

For instance, a Docker image can have a particular version of a web server or, for example, a

database server, or in this case run an entire Linux OS with ROS installed.

For the preparation of the lecture the following Dockerfile is written which you can see in snippets

below, which is a great way to start explaining how the document works:

C.R. 2

dockerfile1 # Declare the ubuntu version

2 FROM ubuntu:jammy-20250404

Here we are declaring a base image. A base image is a bare-bones OS and/or application in which

we build our software on. In this case it is an Ubuntu jammy jellyfish (22.04).

C.R. 3

dockerfile1 # Define the target-platform and the current maintainer

2 ARG TARGETPLATFORM

3 LABEL maintainer="dtm@mci4me.at"

We define an ARG which is a variable. We set a TARGETPLATFORM which we can use to change the

architecture of the install. LABEL is used to give a meta-data information which in this case is a

simple email information of the current maintainer.

C.R. 4

dockerfile1 # Execute the following command as string

2 SHELL ["/bin/bash", "-c"]

Robotics Page 61

Chapter2 Welcome to Linux D. T. McGuiness, PhD

Next we configure the shell of the container to use bash and process the given input as a string and

NOT as a command.

C.R. 5

dockerfile1 # Upgrade Ubuntu Jammy and remove downloaded list of packages

2 RUN apt-get update -q && \

3 DEBIAN_FRONTEND=noninteractive apt-get upgrade -y && \

4 apt-get autoclean && \

5 apt-get autoremove && \

6 rm -rf /var/lib/apt/lists/*

We now start with building the OS. We start with declaring an update of the OS and ask it to do it

non-interactively. Once it updates the system, we ask it to remove the repo-list to save up on space.

C.R. 6

dockerfile1 # Install Ubuntu Mate desktop and remove downloaded list of packages

2 RUN apt-get update -q && \

3 DEBIAN_FRONTEND=noninteractive apt-get install -y \

4 ubuntu-mate-desktop && \

5 apt-get autoclean && \

6 apt-get autoremove && \

7 rm -rf /var/lib/apt/lists/*

To make our programming easier and creating a more friendly environment, we shall install a GUI.

There are a wide variety of desktop environments for use in Linux, such as GNOME, KDE, Xcfe but

for our application we shall use mate which is the default environment for Linux Mint.

C.R. 7

dockerfile1 # Add important packages

2 RUN apt-get update && \

3 DEBIAN_FRONTEND=noninteractive apt-get install -y \

4 tigervnc-standalone-server tigervnc-common \

5 supervisor wget curl gosu git sudo python3-pip tini nano\

6 build-essential vim sudo lsb-release locales info\

7 bash-completion tzdata emacs \

8 dos2unix && \

9 apt-get autoclean && \

10 apt-get autoremove && \

11 rm -rf /var/lib/apt/lists/*

We start now with installing software on top of the OS. Remember, we are installing a bare bones

system which means it is stripped from all the software suites we take for granted.

C.R. 8

dockerfile1 # Install noVNC and Websockify

2 RUN git clone \

3 https://github.com/AtsushiSaito/noVNC.git \

4 -b add_clipboard_support /usr/lib/novnc

5

6 RUN pip install git+https://github.com/novnc/websockify.git@v0.10.0

7 RUN ln -s /usr/lib/novnc/vnc.html /usr/lib/novnc/index.html

8

9 # Set remote resize function enabled by default

Page 62 Robotics

2.3 Docker

C.R. 9

dockerfile10 RUN sed -i \

11 "s/UI.initSetting('resize', 'off');/UI.initSetting('resize', 'remote');/g" \

12 /usr/lib/novnc/app/ui.js

13

14 # Disable auto update and crash report

15 RUN sed -i 's/Prompt=.*/Prompt=never/' /etc/update-manager/release-upgrades

16 RUN sed -i 's/enabled=1/enabled=0/g' /etc/default/apport

This section is all about installing a Virtual Network Computing (VNC) which is a graphical desktop-

sharing system which allows remote controlling of another computer. It transmits the keyboard and

mouse input from one computer to another, relaying the graphical-screen updates, over a network.

We also do some text manipulation to fix some glitches.

C.R. 10

dockerfile1 # Install Firefox and its configuration

2 RUN DEBIAN_FRONTEND=noninteractive add-apt-repository ppa:mozillateam/ppa -y && \

3 echo 'Package: *' > /etc/apt/preferences.d/mozilla-firefox && \

4 echo 'Pin: release o=LP-PPA-mozillateam' \

5 » /etc/apt/preferences.d/mozilla-firefox && \

6 echo 'Pin-Priority: 1001' » /etc/apt/preferences.d/mozilla-firefox && \

7 apt-get update -q && \

8 apt-get install -y \

9 firefox && \

10 apt-get autoclean && \

11 apt-get autoremove && \

12 rm -rf /var/lib/apt/lists/*
13

To aid in easy navigation and searching information, we shall also install Firefox into this docker

container as well.

C.R. 11

dockerfile1 # Install VSCodium for people who are accosstomed to VSCode but

2 # prefer to keep it open-source

3 RUN wget https://gitlab.com/paulcarroty/vscodium-deb-rpm-repo/raw/master/pub.gpg \

4 -O /usr/share/keyrings/vscodium-archive-keyring.asc && \

5 echo 'deb [signed-by=/usr/share/keyrings/vscodium-archive-keyring.asc]

https://paulcarroty.gitlab.io/vscodium-deb-rpm-repo/debs vscodium main' \↪→

6 | tee /etc/apt/sources.list.d/vscodium.list && \

7 apt-get update -q && \

8 apt-get install -y codium && \

9 apt-get autoclean && \

10 apt-get autoremove && \

11 rm -rf /var/lib/apt/lists/*
12

To allow us to do easy programming, we shall install VSCodium, an open-source implementation of

VSCode.

Robotics Page 63

Chapter2 Welcome to Linux D. T. McGuiness, PhD

C.R. 12

dockerfile1 # Install ROS Humble version

2 ENV ROS_DISTRO=humble

3

4 # Install Desktop version

5 ARG INSTALL_PACKAGE=desktop

6

7 RUN apt-get update -q && \

8 apt-get install -y curl gnupg2 lsb-release && \

9 curl -sSL https://raw.githubusercontent.com/ros/rosdistro/master/ros.key \

10 -o /usr/share/keyrings/ros-archive-keyring.gpg && \

11 echo "deb [arch=$(dpkg --print-architecture)

signed-by=/usr/share/keyrings/ros-archive-keyring.gpg]

http://packages.ros.org/ros2/ubuntu $(lsb_release -cs) main" | tee

/etc/apt/sources.list.d/ros2.list > /dev/null && \

↪→

↪→

↪→

12 apt-get update -q && \

13 apt-get install -y ros-${ROS_DISTRO}-${INSTALL_PACKAGE} \

14 python3-argcomplete \

15 python3-colcon-common-extensions \

16 python3-rosdep python3-vcstool && \

17 rosdep init && \

18 rm -rf /var/lib/apt/lists/*
19

20 RUN rosdep update

21

22 # Install simulation package only on amd64

23 RUN if ["$TARGETPLATFORM" = "linux/amd64"]; then \

24 apt-get update -q && \

25 apt-get install -y \

26 ros-${ROS_DISTRO}-gazebo-ros-pkgs \

27 ros-${ROS_DISTRO}-ros-ign && \

28 rm -rf /var/lib/apt/lists/*; \

29 fi

Now that everything is installed, we start the installation of ROS and its dependencies. Here we

define ENV variable which allows us set which version of ROS to install.

C.R. 13

dockerfile1 # Download the Linux Tutorial file from repo

2 ARG ZIPFILE="https://github.com/dTmC0945/L-MCI-BSc-Mobile-Robotics/raw/refs/heads/main/ c
datasets/linux-tutorials.zip"↪→

3

4 # Create some user directories to simulate a desktop environment

5 RUN mkdir -p \

6 /home/ubuntu/Downloads \

7 /home/ubuntu/Downloads \

8 /home/ubuntu/Desktop

9

10 # Download the tutorial files to their correct place

11 RUN cd "/home/ubuntu/Desktop" && \

12 wget -O "linux.zip" "$ZIPFILE" && \

13 unzip "linux.zip" && \

14 rm "linux.zip"

15

Page 64 Robotics

2.3 Docker

C.R. 14

dockerfile16 # Enable apt-get completion after running `apt-get update` in the container

17 RUN rm /etc/apt/apt.conf.d/docker-clean

18

19 # Copy the entrypoint.sh into the image

20 COPY ./entrypoint.sh /

21

22 # Convert file for linux compatability

23 RUN dos2unix /entrypoint.sh

24 ENTRYPOINT ["/bin/bash", "-c", "/entrypoint.sh"]

25

26 # Define user and password

27 ENV USER=ubuntu

28 ENV PASSWD=ubuntu

Finally, we download some additional files from a repo which will be a folder containing tutorial files

for use in learning Linux. We then unzip it to Desktop and remove the image. To finish of we define

a user called ubuntu with a password of ubuntu.

As mentioned, a Dockerfile is a text document which includes all the different steps and instructions

on how to build a Docker image. In a general sense, the main elements described in the Dockerfile

are:

� the base image,

� required dependencies, and

� commands to execute application deployment within a container.

Let’s have a look in detail as to what is going on under-the-hood. Here we will have a look at

command used in the file. For a more detailed explanation of what is going on, please have a look

at the file.

FROM

This instruction sets the base image on which the new image is going to be built upon. It is

usually the first instruction in a Dockerfile.

In this case we are downloading the official ubuntu:jammy-20250404 version from the docker

repository.

ARG These define variables used during the building of the image.

Here, we define a variable called TARGETPLATFORM to control the architecture installed on the

OS

LABEL

Allows writing meta-data information to the docker image. This could be the maintainer of

the code or the version as an example.

Robotics Page 65

Chapter2 Welcome to Linux D. T. McGuiness, PhD

RUN

This will be an instruction that will be executed for running the commands inside the container

while building. It is typically used to install an application, update libraries, or do general setup.

COPY

Allows us to copy a file from the host to the image. In this case we are copying a special file

called entrypoint.sh which sets up the container with various configurations.

ENV

Sets up environmental parameters inside the image.

To build this image we need to use the CLI, move to the directory where both Dockerfile and

entrypoint.sh is present and run the following code to build image.

C.R. 15

bash1 docker build . -t mci:ros2 -f Dockerfile

2.3.2 Running the Container

Now we built the image, we now need to create a container. The following command will create a

new container from an image.

This command will create a container every time it is invoked.

An image is a read-only, self-contained template containing instructions for building a

Docker container, like a blueprint for a building. Container is a running instance of that

image, like the building itself, and is a fully isolated environment for running applications.

Images are used to create containers, and multiple containers can be created from the

same image.

C.R. 16

bash1 docker run \

2 --volume ~/Documents/docker-documents:/home/ubuntu/Desktop/Host \

3 --publish 6080:80 \

4 --name="ros2linux" \

5 --security-opt seccomp=unconfined \

6 --shm-size=512m \

7 mci:ros2

Let’s have a look at all the options given here and understand whats going on:

docker run

Our main command. It runs a command in a new container, pulling the image if needed and

starting the container. Of course, in our file it is already written so when this is executed,

there won’t be any additional downloads needed.

Page 66 Robotics

2.3 Docker

--volume

Binds volume between the host and the computer. Here we introduce a path from our host

computer ~ Documents docker-documents and link it to the docker container root home

ubuntu Desktop Host to allow us to share files between host and docker container.

The left side of the path may need to be adjusted for your computer.

--publish

Publish a container’s port(s) to the host. Here we are allowing access of the port 6080 (TCP)

to the host computer which is used by noVNC.

--name

Adds a specific name to a container. If this option is not set a random will be given.

--security-opt

Additional security options. Here we are passing no additional security options. This is done

due to the requirements by noVNC.

--shm-size

the amount of shared memory allotted to a docker container. A temporary file storage

filesystem using Random Access Memory (RAM) for storing files.

Once the container is created, please use the following to close it properly.

C.R. 17

bash1 docker container stop "ros2linux"

To re-run the container and continue where left off, use the following.

C.R. 18

bash1 docker container start "ros2linux"

Robotics Page 67

Chapter3
Command Line Fundamentals

Table of Contents

3.1 Introduction . 69
3.2 The Structure of Commands . 72
3.3 Helpful Keyboard Shortcuts for the Terminal . 75
3.4 When you need help with Commands . 77
3.5 Additional Information . 81

3.1 Introduction

In this day and age, it takes a certain level of skill to be alien to technology and as everyone has

computers in their pockets, the interactions with them is almost uncountable. However, these

interactions are done through what is called a GUI. Devices running on Windows, MacOS, iOS, and

Android all use this interface to interact with the user.

i.e., when clicked on an icon, the close, minimize and maximize buttons on the windows

etc..

It must be stressed as these visual components are all for the benefit of the user. While these

greatly simplify tasks like photo editing or video creation, some applications just completely omit

the use of GUI and instead use a simpler version of it called CLI. This is especially true for servers1 1A server is a software or
hardware offering a service
to a user, usually referred
to as client. As an
example, a hardware server
is a shared computer on a
network, usually powerful
and housed in a data
centre.

,

embedded applications and in many other areas where either memory is limited or efficiency of the

computer (e.g., such as limiting the CPU load etc.) is highly desired. Server software, utilities, and

other programs usually only need some text-based information to do what they do. Many of these

programs run on a server in a data centre somewhere without a monitor so the overhead of a GUI is

completely unnecessary.

Chapter3 Command Line Fundamentals D. T. McGuiness, PhD

UNIX Windows

Bourne shell (sh) COMMAND.COM, default in Windows 9x and provided for DOS compatibility
in 32-bit versions of NT-based Windows via NTVDM.

Almquist shell (ash)

Debian Almquist shell (dash)

Bash (Unix shell) (bash)

Korn shell (ksh) cmd.exe, the default command-line interpreter of the Windows NT-family

Z Shell (zsh)

C shell (csh) Recovery Console

TENEX C shell (tcsh) Windows PowerShell, based on .NET Framework

Ch shell (ch) PowerShell, based on .NET Core

Emacs shell (eshell) Hamilton C shell, a clone of the Unix C shell

Friendly interactive shell (fish)

Powershell (pwsh) 4NT, a clone of CMD.EXE.

rc shell (rc) Take Command, a newer incarnation of 4NT

Stand-alone shell (sash)

Scheme Shell (scsh)

Table 3.1: Types of shells used in industry and academia. For reference, the authors computer uses zsh.

One way we interact with these programs that don’t have a GUI is through the CLI. This is a

text-based interface where the commands to execute are typed and all actions are shown as text on

a terminal screen, whether it is updating a software or moving files around. The environment we use

is called a shell, or command-line interpreter, and there are many shells out there.

A list of Shells that can be encountered in industry and academia can be seen in Table 3.1.

The command-line interpreter was one of the earliest ways of interacting with the general-purpose

computer, starting in 1971 with the Thompson shell for UNIX22A family of multitasking,
multi-user computer

operating systems that
derive from the original

AT&T Unix, whose
development started in

1969. It is considered one
of the most groundbreaking

software ever designed.

. As UNIX evolved and came to be

replaced in many capacities by Linux, the shell environments evolved and improved as well.

Bash, or the Bourne-again shell is one of the most widely-used shells and odds are, it’s the one to

be encountered in industry or in academic work. Bash is the shell that comes enabled by default

with most of the popular Linux distributions. It’s also available on macOS3

3newer versions have zsh

shell instead but they are
designed to be compatible.

The author of this work
also uses zsh as his main

driver.

and in Windows with the

Windows subsystem for Linux.

Page 70 Robotics

3.1 Introduction

In this document, Bash will be used. However, the reader is encouraged to explore some of

the other shells out there once a working foundation in Bash is achieved.

Robotics Page 71

Chapter3 Command Line Fundamentals D. T. McGuiness, PhD

Figure 3.1: A graphical interface from the late 1980s, which features a TUI window for a man page, a shaped window (oclock) as well
as several iconified windows. In the lower right we can see a terminal emulator running a Unix shell, in which the user can
type commands as if they were sitting at a terminal. - From Wikipedia

3.2 The Structure of Commands

There are a few concepts and principles which needs to be understood to be a productive member

of the CLI family. Before jumping into using commands though, have a look at how command line

statements are structured with the following:

C.R. 1

bash1 command [-flag(s)] [-option(s) [value]] [argument(s)]

This is the general form. The pattern is command, options, and then arguments. Here’s a couple

of common commands you’ll see with options and arguments that are used with them.

C.R. 2

bash1 ls -l /tmp

2 cd /usr/local

3 cat /etc/passwd

The details of what the aforementioned commands do will be the focus in the future. I just want to

show you the structure of what we’ll be working with before we get into what these actually do.

Depending on the current action, you might just have a command or a command and one or more

options or just a command with one or more arguments.

But there will always be a command.

Command is the minimum thing which can be done with a CLI. Think of it as the atom of any action

you can take. The command is the program you’re running or the action you’re taking. To give

Page 72 Robotics

3.2 The Structure of Commands

command to a UNIX system, type the name of the command, along with any associated information,

such as a filename, and press the Return key.

The typed line is called the command line and UNIX uses a special program, called the shell or the

command line interpreter, mentioned in the previous section, to interpret what you have typed into

what you want to do.

The components of the command line are:

1. the command,

2. any options required by the command,

3. the command’s arguments.4 4This is optional as some
commands just don’t have
any options.

3.2.1 Some Rules Regarding the Syntax

Since the introduction of UNIX System V, Release 3 (released 1983), any new commands must

obey a particular syntax governed by the following rules:

� Command names must be between 2 and 9 characters in length,

� Command names must be comprised of lowercase characters and digits,

� Option names must be one character in length,

� All options are preceded by a hyphen (-),

� Options without arguments may be grouped after the hyphen,

� The first option argument, following an option, must be preceded by white space,

i.e., -o sfile is valid but -osfile is illegal.

� Option arguments are not optional,

� If an option takes more than one argument then they must be separated by commas with no

spaces, or if spaces are used the string must be included in double quotes (").,

i.e., both are acceptable: -f past,now,next and -f "past now next".

� All options must precede other arguments on the command line,

� A double hyphen -- may be used to indicate the end of the option list,

� The order of the options are order independent,

Robotics Page 73

Chapter3 Command Line Fundamentals D. T. McGuiness, PhD

� The order of arguments may be important,

� A single hyphen - is used to mean standard input.

Options must come after the command and before arguments. Options should not appear

after the main argument(s). However, some options can have their own arguments! Histori-

cally, UNIX commands have been fairly standard in the way that they use options but there

are variations.

Bear in mind that commands established before System V, Release 3, do not conform to all

of the above rules.

Page 74 Robotics

3.3 Helpful Keyboard Shortcuts for the Terminal

3.3 Helpful Keyboard Shortcuts for the Terminal

Before we moving on to more specific commands and get into CLI programming, there’s a few

other helpful things to know about working at the Command Line. The first is Tab completion, a

wonderful feature of the Bash shell, and is also included in many others. This feature let’s you skip

typing out a whole file name or folder name when you’re working at the Command Line.

When you’re working in the command line it looks at all the information it has so far and makes a

guess about what you mean. For example, I can type ls -l De and press Tab , and it completes the

line with Desktop. Now type ls -l Do and nothing would happen when I press Tab . That’s because
Tab doesn’t have one clear suggestion to return. As it can be either Documents of Downloads.

However, pressing Tab again should give you a suggestion of which items can be completed to.

For reference, in the following page, there is a table for most useful keyboard shortcut for Linux

Bash.

Robotics Page 75

Chapter3 Command Line Fundamentals D. T. McGuiness, PhD

Shortcut Action

Navigation Ctrl + A Go to the beginning of the line.

Ctrl + E Go to the end of the line.

Alt + F Move the cursor forward one word.

Alt + B Move the cursor back one word.

Ctrl + F Move the cursor forward one character.

Ctrl + B Move the cursor back one character.

Ctrl + X Toggle between the current cursor position and the beginning of the line.

Editing Ctrl + A Undo! (That’s an underscore, so you’ll need to use Shift as well.).

Ctrl + X Edit the current command in your $EDITOR.

Alt + D Delete the word after the cursor.

Alt Delete the word before the cursor.

Ctrl + D Delete the character beneath the cursor.

Ctrl + H Delete the character before the cursor (like backspace).

Ctrl + K Cut the line after the cursor to the clipboard.

Ctrl + U Cut the line before the cursor to the clipboard.

Ctrl + D Cut the word after the cursor to the clipboard.

Ctrl + W Cut the word before the cursor to the clipboard.

Ctrl + Y Paste the last item to be cut.

Processes Ctrl + L Clear the entire screen (like the clear command).

Ctrl + Z Place the currently running process into a suspended background process.

Ctrl + C Kill the currently running process by sending the SIGINT signal.

Ctrl + D Exit the current shell.

Return Exit a stalled SSH session.

History Ctrl + R Bring up the history search..

Ctrl + G Exit the history search.

Ctrl + P See the previous command in the history.

Ctrl + N See the next command in the history.

Page 76 Robotics

3.4 When you need help with Commands

3.4 When you need help with Commands

If you ever see an experienced Linux user typing away at the command line in blazing speeds it can

seem like memorising the ins and outs of commands and options is the only way to be productive and

understand what’s going on. But everybody starts somewhere, and even experienced command-line

users don’t memorize everything.

In the world of programming, it’s not practical to try to memorise all of the syntax and options of

command-line tools. Of course, it’s important to remember the basics, but while you’re getting

started, you only need to remember a few commands. The first one is man, which stands for the

manual pages.

text1 MAN(1) Manual pager utils MAN(1)

2

3 NAME

4 man - an interface to the system reference manuals

5

6 SYNOPSIS

7 man [man options] [[section] page ...] ...

8 man -k [apropos options] regexp ...

9 man -K [man options] [section] term ...

10 man -f [whatis options] page ...

A man page5 5Stands for short for
manual page.

is a form of software documentation found on UNIX and Unix-like operating systems.

Topics covered include programs, system libraries, system calls, and sometimes local system details.

Think of the man pages as a technical reference book for your Linux distribution6 6i.e., Ubuntu, Mint. If you know the

name of a command, you can find out a wealth of information about what it does, what options it

provides or what arguments it takes. To look up something in the manual pages, type man, followed

by a command you want to learn. Open up the Terminal by Ctrl + Alt + T . Earlier, you saw the

command ls, so let’s look that up. Type man ls and press Return .

Some distributions or application specific installation of Linux remove the man pages to save

up on space. In these system one must first do unminimize to install man pages.

C.R. 3

bash1 man ls | head -10

text1 LS(1) User Commands LS(1)

2

3 NAME

4 ls - list directory contents

5

6 SYNOPSIS

7 ls [OPTION]... [FILE]...

8

Robotics Page 77

Chapter3 Command Line Fundamentals D. T. McGuiness, PhD

text9 DESCRIPTION

10 List information about the FILEs (the current directory by default).

Here, you can see some information about the ls command77Please ignore the
head - 10, we will have a

look at it later.

. You can see that it’s for listing

directory contents and in the synopsis section you get a quick overview of how to use the command.

In this case it is ls [OPTION]... [FILE].... We write ls followed by any of the options we

need, and the file or folder path we want to use.

The terms in square brackets88for example [OPTION]

and [FILE]

are optional. This basically means you don’t have to use these for

the command to work. You can just use the ls command by itself to see the default output of

listing the directory. Here, below the description header, there is a bit more detailed information

about the command, including its default behaviour and usage notes, and below, is a listing of the

options that the command takes.

text1 Usage: ls [OPTION]... [FILE]...

2 List information about the FILEs (the current directory by default).

3 Sort entries alphabetically if none of -cftuvSUX nor --sort is specified.

4

5 Mandatory arguments to long options are mandatory for short options too.

6 -a, --all do not ignore entries starting with .

7 -A, --almost-all do not list implied . and ..

8 --author with -l, print the author of each file

9 -b, --escape print C-style escapes for nongraphic characters

10 --block-size=SIZE with -l, scale sizes by SIZE when printing them;

There are a lot of ways to use the man pages efficiently and is a powerful tool when you need to find

what can a command do. There are other ways to learn about a command. Most of commands also

have an option called help, which provides a brief amount of information about them. However,

they usually refer you to the manual pages for more detailed documentation. Therefore, help will

give you a brief information compared to the man command.

You can see if a command you’re using has this feature available by typing --help after the

command.

C.R. 4

bash1 ls --help | head -10

text1 Usage: ls [OPTION]... [FILE]...

2 List information about the FILEs (the current directory by default).

3 Sort entries alphabetically if none of -cftuvSUX nor --sort is specified.

4

5 Mandatory arguments to long options are mandatory for short options too.

6 -a, --all do not ignore entries starting with .

7 -A, --almost-all do not list implied . and ..

8 --author with -l, print the author of each file

9 -b, --escape print C-style escapes for nongraphic characters

10 --block-size=SIZE with -l, scale sizes by SIZE when printing them;

Page 78 Robotics

3.4 When you need help with Commands

Here you can scroll up and down to have a look at some of the information. There is another

command that’s useful when you’re working in Bash, and that’s just help by itself.

Information The help Command

Displays information about shell built-in commands.

C.R. 5

bash1 help | head -10

text1 GNU bash, version 5.2.21(1)-release (aarch64-unknown-linux-gnu)

2 These shell commands are defined internally. Type `help' to see this list.

3 Type `help name' to find out more about the function `name'.
4 Use `info bash' to find out more about the shell in general.

5 Use `man -k' or `info' to find out more about commands not in this list.

6

7 A star (*) next to a name means that the command is disabled.

8

9 job_spec [&] history [-c] [-d offset] [n] or hist>

10 ((expression)) if COMMANDS; then COMMANDS; [elif C>

As we get into working with the Bash shell, the help tool can act as a handy reminder for the

syntax of some Bash specific commands.

But what if you don’t know the name of a command you are looking for?

In that case, you can use another program called apropos which searches a list of commands and

their descriptions for text you provide as an argument.

Information The apropos Command

helps users find any command using its man pages.

So if you wanted to find out what can list things, I could type apropos list and see a number of

results that match that word.

C.R. 6

bash1 apropos list | head -10

text1 port-contents(1) - List the files installed by a given port

2 port-dependents(1), port-rdependents(1) - List ports that depend on a given (installed)

port↪→

3 port-deps(1), port-rdeps(1) - Display a dependency listing for the given port(s)

4 port-distfiles(1) - Print a list of distribution files for a port

5 port-echo(1) - Print the list of ports the argument expands to

Robotics Page 79

Chapter3 Command Line Fundamentals D. T. McGuiness, PhD

text6 port-installed(1) - List installed versions of a given port, or all installed ports

7 port-list(1) - List available ports

8 port-outdated(1) - List outdated ports

9 port-variants(1) - Print a list of variants with descriptions provided by a port

10 AllPlanes(3), BlackPixel(3), WhitePixel(3), ConnectionNumber(3), DefaultColormap(3),

DefaultDepth(3), XListDepths(3), DefaultGC(3), DefaultRootWindow(3),

DefaultScreenOfDisplay(3), DefaultScreen(3), DefaultVisual(3), DisplayCells(3),

DisplayPlanes(3), DisplayString(3), XMaxRequestSize(3), XExtendedMaxRequestSize(3),

LastKnownRequestProcessed(3), NextRequest(3), ProtocolVersion(3), ProtocolRevision(3),

QLength(3), RootWindow(3), ScreenCount(3), ScreenOfDisplay(3), ServerVendor(3),

VendorRelease(3) - Display macros and functions

↪→

↪→

↪→

↪→

↪→

↪→

Here’s the command that can list directory contents we were looking for.

text1 ls(1) - list directory contents

Searching for commands this way can be time-consuming, but if you know what you need to do but

not the command to do it, apropos is very helpful and powerful.

Page 80 Robotics

3.5 Additional Information

3.5 Additional Information

3.5.1 Use Tab completion on the Shell

If you do not know the exact name of a command, then you can make use of tab completion. To

use this action, launch the terminal by pressing Ctrl + Alt + T or just click on the terminal icon

in the task bar. Just type the command name that you know in the terminal and then press Tab

twice. For example, if we can’t remember man, we can write ma and can choose one of the option

the Bash shell presents us.

C.R. 7

bash1 ~$ ls

text1 macptopbm make-ssl-cert

2 mag mako-render

3 mailmail3 man

4 make mandb

5 make4ht manpath

6 makeconv man-recode

7 makedtx mapfile

8 make-first-existing-target mapscrn

9 makeglossaries match_parens

10 makeglossaries-lite mathspic

11 makeindex mattrib

12 makejvf mawk

3.5.2 The info command

Some commands do not have their manuals written or they are either incomplete. To get help with

those commands, we use info. To use this command, launch the terminal by pressing Ctrl + Alt

+ T or just click on the terminal icon in the task bar. Just type info in the terminal and with a

space, type the name of the command whose manual does not exist and press Return .

C.R. 8

bash1 info ls | head -10

text1 File: coreutils.info, Node: ls invocation, Next: dir invocation, Up: Directory listing

2

3 10.1 ls: List directory contents

4 ==================================

5

6 The ls program lists information about files (of any type, including

7 directories). Options and file arguments can be intermixed arbitrarily,

8 as usual. Later options override earlier options that are incompatible.

9

Robotics Page 81

Chapter3 Command Line Fundamentals D. T. McGuiness, PhD

text10 For non-option command-line arguments that are directories, by

The info command reads documentation in the info format99A mostly a plain text
transliteration of the

Texinfo source, with the
addition of a few control

characters to separate
nodes and provide

navigational information,
designed by the NU

project.

. It will give detailed information for a

command when compared with the man page. The pages are made using the Texinfo tools which

can link with other pages, create menus, and easy navigation.

Information Man v. Info

Man pages are the UNIX traditional way of distributing documentation about programs. The term “man

page” itself is short for “manual page”, as they correspond to the pages of the printed manual; the man

pages “sections”10101 for commands, 2 for
system calls, etc...

correspond to sections in the full UNIX manual. Support is still there if you want to print

a man page to paper, although this is rarely done these days, and the sheer number of man pages make it

just impossible to bind them all into a single book.

In the early ’90s, the GNU project decided that “man” documentation system was outdated, and wrote

the info command to replace it: info has basic hyperlinking features and a simpler markup language to

use (compared to the troff1111A major component of a
document processing

system developed by Bell
Labs for the Unix operating

system. It is mostly
outdated.

system used for man pages). In addition, GNU advocates against the use of

man pages at all and contends that complex software systems should have complete and comprehensive

documentation rather than just a set of short man pages.

In the end, the form in which you get documentation depends on the internal policies of the project that

provided the software in the first place – there is no globally accepted standard.

3.5.3 The whatis command

This command is used with another command just to show a one liner usage of the latter command

from its manual. It’s a quick way of knowing the usage of a command without going through the

whole manual.

whatis command in Linux is used to get a one-line manual page description. In Linux, each manual

page has some sort of description within it. So, this command search for the manual pages names

and show the manual page description of the specified filename or argument.

To use this command, launch the terminal by pressing Ctrl + Alt + T or just click on the terminal

icon in the task bar. Just type whatis in the terminal and after a space, type the name of the

command whose one liner description you want (for example ls) and then press Return .

C.R. 9

bash1 whatis ls | head -10

Page 82 Robotics

3.5 Additional Information

text1 dcmcjpls(1) - Encode DICOM file to JPEG-LS transfer syntax

2 dcmdjpls(1) - Decode JPEG-LS compressed DICOM file

3 gdircolors(1), dircolors(1) - color setup for ls

4 gls(1), ls(1) - list directory contents

5 gdircolors(1), dircolors(1) - color setup for ls

6 git-ls-files(1) - Show information about files in the index and the working tree

7 git-ls-remote(1) - List references in a remote repository

8 git-ls-tree(1) - List the contents of a tree object

9 git-mktree(1) - Build a tree-object from ls-tree formatted text

10 gls(1), ls(1) - list directory contents

Robotics Page 83

Chapter4
Working with Files and Folders

Table of Contents

4.1 Introduction . 85
4.2 A Detailed Look in ls Command . 90
4.3 Creating and Removing Folders . 92
4.4 Move, Copy and Delete Files and Folders . 94
4.5 Role to Users and sudo . 96
4.6 File Permissions . 98
4.7 Hard and Symbolic Links . 101
4.8 The Linux File System . 104
4.9 Common Command-Line Tools and Tasks . 107
4.10 Advanced Topics . 111

4.1 Introduction

If you’ve ever worked with computers for any amount of time, you would probably be familiar with the

concept of files and folders.1 1I mean this is in hope
that you are familiar
otherwise we might have a
problem.

Files are a collection of information representing photos, documents,

source code, databases and all kinds of other things.

They can be thought as the basic unit of data storage we work with a GUI. That’s still pretty much

the same in the CLI as well. There are two (2) commands that needs explaining. These are called

file and stat. Both these commands can look at a file and learn some things about it.

� The first one, file will generally be able to tell what kind of file you’re asking about.

– If a file’s name isn’t clear or if it doesn’t have an extension, sometimes it can be tricky

to figure out what exactly it is.

https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Database

Chapter4 Working with Files and Folders D. T. McGuiness, PhD

– Using file, will give you some insight into whether something is an archive or an

executable file or say, a text file or other kind of document.

� The second one, stat, on the other-hand, tells you some extended information about a file.

Information The file Command

Determines the type of a file. It identifies file types by examining their content rather than their file

extensions.

Information The stat Command

Provide detailed statistics about files and file systems. It displays crucial information such as file size,

permissions, ownership, and timestamps.

To have a quick test, lets have a file called sample.txt with the contents of the following:

C.R. 1

text1 It was the best of times, it was the worst of times, it was the age of wisdom,

2 it was the age of foolishness, it was the epoch of belief, it was the epoch of

3 incredulity, it was the season of light, it was the season of darkness, it was

4 the spring of hope, it was the winter of despair.

Now while we now what it contains, let’s assume we don’t. To see what kind of formatting this file

contains we run the file command:

C.R. 2

bash1 cd ~/Downloads || exit &&

2 file sample.txt

text1 sample.txt: ASCII text

As we can see this command tells us the file has an ASCII formatting which means it is generally

supported by almost all computers without the need of additional text encoding.22an acronym for American
Standard Code for

Information Interchange, is
a character encoding

standard for representing a
particular set of 95

(English language focused)
printable and 33 control

characters - a total of 128
code points. The set of

available punctuation had
significant impact on the

syntax of computer
languages and text markup.

ASCII hugely influenced
the design of character sets
used by modern computers;

for example, the first 128
code points of Unicode are

the same as ASCII.

To get more

information about the file we invoke the stat command:

C.R. 3

bash1 cd ~/Downloads || exit &&

2 stat sample.txt

text1 16777232 85091780 -rw-r--r-- 1 danielmcguiness staff 0 287 "Mar 4 19:05:27 2025" \

2 "Mar 4 19:05:15 2025" "Mar 4 19:05:16 2025" "Mar 4 19:05:15 2025" 4096 8 0 sample.txt

As we can see, we have a bit more information about the file, regarding its user, the date in which it

was modified, the size and more. As we’ll see when we look at the ls command, some of this is

Page 86 Robotics

https://en.wikipedia.org/wiki/ASCII

4.1 Introduction

available there. These commands can be helpful to know about if you come across an unknown file.

In the graphical environment3 3i.e., GUI, we can navigate around these files and folders with the mouse, seeing

how they’re organized and finding out information about them. We can do the same thing in a CLI4 4In a much faster, but
more unforgiving way.

.

In the file browser, we can navigate to the Linux Tutorials file. From the Home folder, you can

click on Desktop. There’s the file. In this graphical interface, we can see pretty easily what folder

you are working in. Over here in the Terminal, we get a clue about what folder we’re working in on

the prompt. The tilda (~) the character, right here, means your home folder.

To match up with where the file browser is, the Linux Tutorials folder, you’ll need to navigate

into the Desktop and then into Linux Tutorials. To do that, use the cd command which stands

for change directory (for more information try typing man cd in your terminal window). Start by

typing the path that we want to go to. Type De and then press Tab to auto complete, since Bash

knows what’s available. Right now, nothing else in you Home folder should start with De except

Desktop. Then press Return to run that command. Since we’ve navigated to a different folder, the

prompt on your terminal window should change.

Now, it says tilde slash Desktop (~/Desktop), indicating that the present working directory is the

documents residing inside of the /home folder. You can also find that out by typing pwd no your

terminal window, for print working directory.

That shows the full path, or absolute path of a folder where you are currently working. An absolute

path starts from the root of the file system, the highest level of the structure where files are stored.

Inside of the root, the home folders for users are stored in the /home folder, and then my user’s

home folder is represented by your user name.

Inside that is documents but we need to go one folder deeper to get inside the Linux Tutorials

folder. Write cd Linux Tutorials and press Return , but we get an error. You can see here

that Bash thinks that we’re trying to get into the folder called just Linux. That’s because cd

has interpreted Linux Tutorials, as two words, two separate arguments, because there’s a space in

between the words. You have to tell Bash that the space is part of the name, not a separator

between two arguments or commands.

There are two ways to do this. The first way is to put the string of text inside quotes (" "), but the

more common thing you’ll see is to just escape a special characters. In this case the space between

Linux and Tutorials. To let Bash know that the space is part of the folder name, not a break in

the command, we type a back slash (\) in front of it. Escaping a character means that it’s treated

literally instead of having any other special meaning.

That works for one character at a time. If we had two spaces in there, we need to escape each

space character individually. So, again type [cd space Linux\ Tutorial] and press Enter . Now

when we type [pwd], we can see where we are.

C.R. 4

bash1 ls

Robotics Page 87

Chapter4 Working with Files and Folders D. T. McGuiness, PhD

text1 Books Data.txt Folder Poem.txt

Now that we’re inside the tutorial files folder, Type ls again to see what we’ve got.

C.R. 5

bash1 ls

text1 Books Data.txt Folder Poem.txt

Let’s take a look inside the Books folder. Write ls and this time I’ll use the -R option to list folders

recursively and add Books/ here on the end.

C.R. 6

bash1 ls -R Books/

text1 Books/:

2 Classics Fantasy Literature Music Poetry Sci-Fi Science

3

4 Books/Classics:

5 'Charles Dickens' 'Herman Mellvile' 'Jane Austen'

6

7 'Books/Classics/Charles Dickens':

8

9 'Books/Classics/Herman Mellvile':

10

11 'Books/Classics/Jane Austen':

12

13 Books/Fantasy:

14 'Brandon Sanderson' 'G. R. R. Martin' 'J.R.R. Tolkien' 'Robert Jordan'

15

16 'Books/Fantasy/Brandon Sanderson':

17

18 'Books/Fantasy/G. R. R. Martin':

19

20 'Books/Fantasy/J.R.R. Tolkien':

21 Unfinished_LotR_Sequel.txt

22

23 'Books/Fantasy/Robert Jordan':

24

25 Books/Literature:

26 American English Greek Turkish

27

28 Books/Literature/American:

29

30 Books/Literature/English:

31

32 Books/Literature/Greek:

33

34 Books/Literature/Turkish:

35

36 Books/Music:

Page 88 Robotics

4.1 Introduction

text37

38 Books/Poetry:

39

40 Books/Sci-Fi:

41 'Arthur C. Clarke' 'Frank Herbert' 'Isaac Asimov'

42

43 'Books/Sci-Fi/Arthur C. Clarke':

44

45 'Books/Sci-Fi/Frank Herbert':

46

47 'Books/Sci-Fi/Isaac Asimov':

48

49 Books/Science:

50 Biology Chemistry Physics

51

52 Books/Science/Biology:

53

54 Books/Science/Chemistry:

55

56 Books/Science/Physics:

Now we can see what’s inside all of the folders inside /Books. Your recursive options means when

ls comes across a folder, it steps inside and looks around, listing anything inside the folder. If it

comes across another folder inside that folder, it does the same thing, steps inside, looks around

and reports back. This is a helpful way of exploring a whole structure of folders.

Robotics Page 89

Chapter4 Working with Files and Folders D. T. McGuiness, PhD

4.2 A Detailed Look in ls Command

As the ls command is one of the more useful commands, it is worth looking into it in a bit more

detail. As discussed, ls is a command in the CLI which allows us to lists the contents of a directory.

C.R. 7

bash1 cd "home/ubuntu/Desktop/Linux Tutorials" && ls

text1 Books Data.txt Folder Poem.txt

This command is highly useful as it’s short and has an easily changeable output. The output itself is

pretty useful, and therefore it’s worth taking some time to understand what it shows.

ls, just by itself gives a list, and depending on the environment, the items might have some

colour or they might not. The colouration is helpful but it’s not critical to use in ls. If it is not

visible, try running ls with the dash dash colour equals always option (--color=always).

Let’s go to the file Linux Tutorials and look around. As we have changed the path in our previous code,

and as long as we are using the same terminal window, our path should still be in Linux Tutorials.

However if it is not the case, please Write cd Desktop/Linux\ Tutorials/. Once we are in the

directory, write the following:

C.R. 8

bash1 ls -l

text1 total 20

2 drwxrwxr-x 1 ubuntu ubuntu 4096 Nov 22 2020 Books

3 -rw-rw-r-- 1 ubuntu ubuntu 102 Nov 20 2020 Data.txt

4 drwxrwxr-x 1 ubuntu ubuntu 4096 Nov 20 2020 Folder

5 -rw-rw-r-- 1 ubuntu ubuntu 592 Nov 18 2020 Poem.txt

Here, the -l is used to see more information about the files within the directory. The first column

on the left shows whether an item is:

� A folder or a directory which will be shown with a d,

� A link which will be shown with a l,

� A file, which is a dash (-). This means that the attribute is missing or offset.

If the output shows colours, folders will generally be blue text. Links will generally be light blue text

and files will generally be grey or they’ll be black or white depending on the background colour of

your terminal.

The next set of columns show a representation of the permissions on the file. What different kinds

of users are allowed to do with the file. Further to the right, we see the owner of the file, and the

Page 90 Robotics

4.2 A Detailed Look in ls Command

group setting of the file. Then we see the size of the file in bytes, which can be a little bit easier to

read with a -h option. Clear the screen and use ls -lh.

C.R. 9

bash1 ls -lh

text1 total 20K

2 drwxrwxr-x 1 ubuntu ubuntu 4.0K Nov 22 2020 Books

3 -rw-rw-r-- 1 ubuntu ubuntu 102 Nov 20 2020 Data.txt

4 drwxrwxr-x 1 ubuntu ubuntu 4.0K Nov 20 2020 Folder

5 -rw-rw-r-- 1 ubuntu ubuntu 592 Nov 18 2020 Poem.txt

This calls out the size post fixes. k for kilo, m for mega, g for giga, and t for terabytes. Then

there’s the date and time that the file was modified. Finally the file name, or in the case of a link,

which we’ll explore a bit later. ls with is wide variety of options, give you a whole lot of helpful

information about folders and files, so it’s a good command to know about.

Robotics Page 91

Chapter4 Working with Files and Folders D. T. McGuiness, PhD

4.3 Creating and Removing Folders

Sometimes, we’ll need to create folders to organise our files, and sometimes we’ll need to remove

folders as well. Sometimes it is good to know how to do it using the CLI. Currently this is the

content of Linux Tutorials. There is a single folder and a text file.

First, create a new folder or directory here in Linux Tutorials folder with mkdir which stands

for make directory, and give it a name. Let’s call it Folder, to keep it simple.

C.R. 10

bash1 mkdir Folder

If we observe the file content, we can see the folder has appeared. We can also see the content of

this directory with the command ls -l. There is the Folder we have just created.

C.R. 11

bash1 ls -l

text1 total 20

2 drwxrwxr-x 1 ubuntu ubuntu 4096 Nov 22 2020 Books

3 -rw-rw-r-- 1 ubuntu ubuntu 102 Nov 20 2020 Data.txt

4 drwxrwxr-x 1 ubuntu ubuntu 4096 Nov 20 2020 Folder

5 -rw-rw-r-- 1 ubuntu ubuntu 592 Nov 18 2020 Poem.txt

If we put a name after mkdir, it assumes we want to create a folder inside of the current working

directory. In this case, this would be Linux Tutorials. We can also specify a path outside the

current folder or a folder deeper inside the working folder.

For example, Add a new folder inside our Books folder for Poetry. For that we have to write

mkdir Books/Lyrics.

C.R. 12

bash1 mkdir Books/Lyrics

What if we wanted to create a subfolder within a new folder? For example, let’s say we want to

make a Beethoven folder inside a Music folder. Instead of creating a Music folder and then creating

a Beethoven folder inside of it, we can do it all at once using the -p option for mkdir. This option

creates any parent folders that are needed, so in this case, it’ll create the Music folder for us and

then create the Beethoven folder after that. Write mkdir -p Books/Music/Beethoven.

C.R. 13

bash1 mkdir -p Books/Music/Beethoven

Here are the newly created files. This is a versatile command. We can also remove empty directories

using the rmdir command for remove directory. Let’s go remove the Beethoven folder that we just

created. For that, we have to write write rmdir Books/Music/Beethoven and now if we take a look

inside the Music folder, it’s empty. One thing to keep in mind about removing folders this way is

Page 92 Robotics

4.3 Creating and Removing Folders

that in order to remove a folder, it has to be empty. That means it’s a little more tedious to remove

a large folder structure with rmdir.

Robotics Page 93

Chapter4 Working with Files and Folders D. T. McGuiness, PhD

4.4 Move, Copy and Delete Files and Folders

It’s pretty common to need to move, copy, and delete files in our day to day GUI activities, and this

is also true when you are working using a CLI. Some experienced command line users would even

argue that it is more efficient and effective to do file management using CLI than GUI as GUI might

take more time with mouse movements.

In light of this, the first command for you to learn using in CLI file management to you here is cp

which stands for copy. Remember if you don’t remember or know how a command options work use

the man command followed by the command you want to know more about (i.e., man cp).)

Information The cp Command

A command in Unix and Unix-like operating systems for copying files and directories.

Let’s make a duplicate copy of our Poem.txt file. As we can see, we are at the right directory to

do any duplication.

C.R. 14

bash1 ls -l

text1 total 20

2 drwxrwxr-x 1 ubuntu ubuntu 4096 May 19 06:07 Books

3 -rw-rw-r-- 1 ubuntu ubuntu 102 Nov 20 2020 Data.txt

4 drwxrwxr-x 1 ubuntu ubuntu 4096 Nov 20 2020 Folder

5 -rw-rw-r-- 1 ubuntu ubuntu 592 Nov 18 2020 Poem.txt

Let’s write to the terminal55if you don’t have a
terminal window open you
can open one using Ctrl +

Alt + T

, cp Poem.txt poem_Copy.txt. The first file name is the file you want

to copy (Poem.txt), and the second file name is where you want to copy it to (Poem_Copy.txt).

C.R. 15

bash1 cp Poem.txt Poem_Copy.txt

Press Return , and then take a look at the contents of this folder again with ls -h. Here we can see,

there’s the original Poem.txt file, and here’s Poem_Copy.txt. You can also copy a file to a different

path. For example, we can copy our Poem.txt file into our /Poetry folder inside the /Books folder.

To do that, write cp Poem.txt, and then use Tab completion to get to Books/Poetry.

C.R. 16

bash1 cp Poem.txt Books/Poetry

If we list the folder, we can see that the file’s been copied there.

C.R. 17

bash1 cd Books/Poetry && ls -h

Page 94 Robotics

4.4 Move, Copy and Delete Files and Folders

text1 Poem.txt

Let’s take a look at moving a file rather than copying it. In principle, the move command has two

(2) uses:

1. You can use it to move files between folders,

2. You can also use it to rename files.

The command for move is mv, so using this command let’s move the Poem_Copy.txt to the /Books

subfolder inside the /Linux Tutorial folder.

C.R. 18

bash1 cd - && mv Poem_Copy.txt Books/

And we can check that the file’s in that folder. And then we can see that it’s no longer in the

original folder by using ls here. It is also possible, as we mentioned before, to rename files with the

mv command.

Information The mv command

Moves one or more files or directories from one place to another.

Let’s try it. Let’s rename the Poem_Copy.txt to Poem_Duplicate.txt using the mv command.

C.R. 19

bash1 cd Books && mv Poem_Copy.txt Poem_Duplicate.txt

C.R. 20

bash1 rm -rf ./

C.R. 21

bash1 ls

Robotics Page 95

Chapter4 Working with Files and Folders D. T. McGuiness, PhD

4.5 Role to Users and sudo

Linux is a multi-user environment. Now, what this means is that multiple users can use an operating

system. This is a concept we’re familiar with nowadays but was a new idea decades ago when Unix

came on the scene when it was mostly used by specialized engineers and programmers. In principle I

can have a user, someone else can have a user in the same operating system, but our files are kept

separate in our individual home folders.

Figure 4.1: Beware of the sudo ghost.

We can create files that only one or another user can

access. At the command line, we can switch between

users with the su command, which is variously referred

to as set user, switch user, or substitute user. To use su,

we write the command followed by the name of the user

we want to switch to. Probably the most common use of

switching users at the command line is to do some system

administration tasks. There are two basic user roles in

Linux. There’s the normal user and the superuser. The

difference here is one of privilege.

The normal user can modify, create, delete, and move

their own files, but they can’t make changes to the system.

They can’t install software, they can’t make changes to

system files, and generally speaking, they can’t browse

other users’ home folders. The superuser, which is called root, can make changes to the system.

It can install software, it can start and stop services, and so on. Normal users can be granted the

ability to temporarily use root’s power through a command called sudo. It’s uncommon and it’s

really bad practice to log into the root user directly to do normal work. In fact, on many systems,

the root user is actually disabled and can’t be logged into.

You only want to borrow root’s power when you really need it, so let’s take a look at that. Let’s

try to see what’s inside root’s home folder, which is located at the root of the drive. These are

two different meanings of the word root, which can be a little confusing. Remember, when we’re

talking about a file system, the root is at the highest level of the organizational structure and that’s

represented by a single slash. When we’re talking about accessing users, root is the superuser. You

could probably draw some parallels between levels in a hierarchy, but just keep in mind there’s two

different meanings for the word root on Linux. Let’s see what happens when I write ls /root, and

I see I’m denied permission.

C.R. 22

bash1 ls /root

text1 ls: cannot open directory '/root': Permission denied

We need to use the sudo command to gain root’s privileges to see inside there. This command

Page 96 Robotics

4.5 Role to Users and sudo

basically tells the system to run whatever command is after it with superuser privileges instead of

the normal user’s privileges. So, write sudo ls /root. I’m prompted for my password. This is a

good sign that the computer understood that I want superuser privileges.

Information Removing password from the system

While it is not recommended, Linux gives you options to do anything and this includes removing user

password from the computer. This would allow you to run sudo commands without ever be. You start first

use the passwd command to delete the password of the user (which is you)

sudo passwd -d username

After entering you username in place of username, if you see password expiry information changed in the

output, the password has been deleted successfully and now you can do all superuser actions without the

need of a password.

Robotics Page 97

Chapter4 Working with Files and Folders D. T. McGuiness, PhD

4.6 File Permissions

At a first glance, file permissions can seem rather cryptic as these were devised when every key

stroke mattered. We’ve seen them before when listing files in a directory but it’s not immediately

clear what they mean.

For example, rwxr-xr-x might not make any sense right now, but hopefully after this section you

will have a working understanding of the file permission system in Linux. The sequence of letters

breaks down into three (3) groups:

1. The First represents the user, or the owner of the file,

2. Second group of three represents the group that owns the file,

3. Third group represents all other users not in the group that owns the file.

Each of the groups of three breaks down into three individual letters, which stand for

Read someone can see the contents of a file but not modify it,

Write someone can make a change to the file, but not read the contents,

eXecute someone can run the file, for example, a program or script, without loading it into another

program first.

There are a couple of other letters you may see and hear, but R, W, and X will take care of what

we need to do for now.

We can change the permissions of a file using the chmod command which changes the file mode

bits on a file, and there are two (2) ways to do it.

1. use octal notation, which uses three values to represent read, write, and execute.

2. use symbolic notation, which uses a shorthand for user, group, others, and all, an operator,

and a list of permissions to change.

We’ll take a look at both, starting with the octal notation.

Information The chmod Command

A shell command for changing access permissions and special mode flags of files (including special files

such as directories). The name is short for change mode where mode refers to the permissions and flags

collectively

Page 98 Robotics

4.6 File Permissions

Read 4 Write 2 Execute 1

Table 4.1: Octal Notation and their numerical meaning.

Octal Notation

If you ever have worked with Linux or macOS or any other UNIX based OS you may have seen

commands like chmod 777, or chmod 644, and similar things. The way we arrive at those numbers

is by assigning read, write, and execute each a different value. Which can be seen in Table 4.1.

This notation makes it easy to represent various states of these three (3) values with just a single

digit. So if a user can read, write and execute, that comes out to seven (7), four plus two plus one

(4+2+1). If the group can only read and execute, that comes out to five (5), four plus one (4+1).

With this system and a some basic maths, it’s impossible to be ambiguous about the

permissions the user, group or others have.

If you don’t feel like doing the maths, you can make up a table like you in Table 4.2.

Octal 0 1 2 3 4 5 6 7

Binary 000 001 010 011 100 101 110 111

Mode --- --x -w- -wx r-- r-x rw- rwx

Table 4.2: The value and their meaning using octal notation

To view the privileges a file has one simply has to write

Symbolic Notation

The symbolic way of representing permissions is a more approachable method to a lot of people,

because instead of setting numbers for each value, you can add or remove a permission by letter.

User is represented by the letter u, group by g, others by o, and changing all of the values is

represented by a. If you leave off a prefix, chmod applies your change to all values. There are three

operators here you can use:

Plus (+) adds whichever permission you specify to what’s already there

Minus (-) removes whatever is there

Equals (=) sign resets the permissions to only whatever value you specify

For example, to set user permissions to read, write and execute, we need to use:

Robotics Page 99

Chapter4 Working with Files and Folders D. T. McGuiness, PhD

C.R. 23

bash1 chmod u+rwx

If we wanted to set group (g) permissions to only read (r), then we use:

C.R. 24

bash1 chmod g=r

C.R. 25

bash1 chmod u-rwx

We can line up the octal and symbolic values and see what the results are. In octal, 777 is the same

as saying a+rwx. 755 is the same as saying u+rwx, g=rx, o=rx. You can see the symbolic notation

is a bit longer, but it contains more information and context, so it’s a little easier to work with. The

nice thing about symbolic notation is that it’s a little easier to make changes, since you’re specifying

what to change rather than what octal value to use. Using octal notation is kind of like using the =

operator in symbolic notation all the time. Saying whatever was there before, now it’s this value,

rather than add read or remove execute.

Page 100 Robotics

4.7 Hard and Symbolic Links

4.7 Hard and Symbolic Links

It is time to look at a special kind of file on the Linux system called link. These are basically files

that are references to other files, and they’re used to avoid having multiple copies of the same file in

different places.6 6It is always in your best
interest to minimise the
number of copies a file has
as the maintenance of all
these files would not be
possible after some time.

You keep one file in a well-known location and then add a little pointer or a link to

other places you want that file to appear to be.

As you’re learning about the CLI you may not have a need to create links, but it’s important

to know what they are when you come across them, and can show their usefulness as you

are developing more complex applications.

To put it simply, there are two (2) kinds of links:

hard links point to data on the disk

Soft or symbolic links point to a file on the disk.

It’s kind of a subtle difference but it changes how the resulting links work. Let’s take a look at soft

links or symbolic links quickly.

4.7.1 Symbolic Links

We can create a symbolic link with the ln command and a -s option:

Information The ln Command

Primarily used to create links for files in Linux, effectively allowing one file to reference another. Doing so

allows you to manage files more efficiently without creating duplicates, making this command crucial for

optimizing storage and managing files in Unix-like operating systems.

1. the name of the source file, (i.e., novel.txt)

2. the file we want to make a link to, (i.e., writing.txt)

3. the name of the link I want to create.

To create a link to novel.txt we create a file called writing.txt and link it. Now the

writing.txt file is a link to the novel.txt file. If you were to Look at the contents of

writing.txt, you would see the contents of the original file, and editing the writing.txt file

means editing the original as well. Think of writing.txt not as a file, but a pointer7 7In this case it is very
similar to that of a pointer
in C as the main idea is the
new symbolic link is
pointing to the original file.

to the original

one.

Robotics Page 101

Chapter4 Working with Files and Folders D. T. McGuiness, PhD

It’s important to know that this kind of link is relative, that is if you move the link somewhere

else on the file system the system won’t be able to reference the original file any more and if

you move the original file, the link will break as well, because the system will be told to look

at a particular path for the linked file and it won’t be there any more.

Hard Links

You can create a hard link by leaving off the dash -s option. If we write ln text.txt, this will

create a hard link to text.txt. A hard link appears to be a regular file in a file listing but it’s also

just a pointer to the original file or more specifically it’s a pointer to the data that the original file

references.

One of its major advantage is hard links can be moved around the file system and it doesn’t matter

if the original file is moved, as a hard link points to the underlying data for a file instead of the file

itself. In fact, every file on your system is a hard link to its underlying data.

Hard links and soft links both have their uses depending on the applications you have in mind.

Below is a quick guide to the options the ln command has.

Page 102 Robotics

4.7 Hard and Symbolic Links

Command Description

--backup make a backup of each existing destination file

-b like --backup but does not accept an argument

-d allow the superuser to attempt to hard link directories (note: will probably fail due to system
restrictions, even for the superuser)

-f remove existing destination files

-i prompt whether to remove destinations

-L dereference TARGETs that are symbolic links

-n treat LINK_NAME as a normal file if it is a symbolic link to a directory

-P make hard links directly to symbolic links

-r create symbolic links relative to link location

-s make symbolic links instead of hard links

-S override the usual backup suffix

-t specify the DIRECTORY in which to create the links

-T treat LINK_NAME as a normal file always

-v print name of each linked file

Robotics Page 103

Chapter4 Working with Files and Folders D. T. McGuiness, PhD

4.8 The Linux File System

It makes sense to explore the Linux file system from a terminal window (i.e., CLI) as it has better

tools to show the map of Linux’s directory tree.

From top to bottom, the directories you are:8

root

/bin

/etc

/sbin

/usr

/usr/bin

/usr/include

/usr/lib

/usr/local

/usr/share

/var

/var/cache

/var/lib

/var/lock

/var/log

/var/opt

/var/spool

/var/tmp

/dev

/home

/lib

/mnt

/opt

/proc

8A Visual description of
the linux file system

/bin contains binaries, that is, some of the applications and programs, such as bash, cat, chmod

. . . . (For more information on binary files, please have a look here.) You will find the ls

program mentioned above in this directory, as well as other basic tools for making and removing

files and directories, moving them around, etc.. There are more bin directories in other parts

of the file system tree, but we’ll be talking about those in a minute.

/boot contains files required for starting the OS. Messing up one of the files here, may cause Linux

to malfunction. Superuser privileges are needed to edit/change files here.

/dev contains device files. Many of these are generated at boot time or even on the fly. For

example, plugging a new webcam or a USB drive into the computer, will create a new device

entry in this directory.

/etc comes from the UNIX operating system, meaning “et cetera” (meaning "and other similar

things") as it was a dumping ground for system files administrators were not sure where else

to put. Nowadays, it would be more appropriate to say that etc stands for "Everything to

configure", as it contains most, if not all system-wide configuration files. For example, the files

that contain the name of your system, the users and their passwords, the names of machines

on your network and when and where the partitions on your hard disks should be mounted are

all in here.

/lib stores libraries which are files containing code that applications use. They contain code snippets

applications use to control peripherals, or send files to the hard disk for example. There are

more lib directories scattered around the file system, but this one, the one hanging directly

off of / is special in that, among other things, contains the all-important kernel modules. The

kernel modules are drivers that make things like the video card, sound card, Wi-Fi, printer, etc.

/home contains users’ personal directories.

/media where external storage will be automatically mounted when it is plugged in and being

accessed. As opposed to most of the other items on this list, /media did not originate in

1970s, mainly because inserting and detecting storage (USB hard disks, SD cards, external

SSDs, etc.) while a computer is running, is relatively new.

/mnt where mount storage devices or partitions are manually mounted which is not used often

nowadays.

/opt here compiled programs (i.e., non-system) are stored. Applications will end up in the /opt/bin

Page 104 Robotics

https://en.wikipedia.org/wiki/Binary_file

4.8 The Linux File System

directory and libraries in the /opt/lib directory.

/proc virtual like /dev, contains information about the computer, such as information about the

CPU and the kernel Linux is running on. As with /dev, the files and directories are generated

when needed as the system is running and things change therefore don’t save your documents

here.

/root the home directory of the superuser (also known as the "Administrator") of the system. It is

separate from the rest of the users’ home directories and it is not meant to be tampered.

/run System processes use it to store temporary data for their own reasons. Similar to /root and

/boot, it is best this folder is left alone.

/sbin similar to /bin, but contains applications only the superuser (hence the initial s) needs.

Application here can be used with the sudo command. /sbin contains tools that can install

stuff, delete stuff and format stuff.

/usr Originally where users’ home directories were kept. However, now /home is where users kept

their stuff as we saw above. These days, /usr contains a mish-mash of directories which in

turn contains: applications, libraries, documentation, wallpapers, icons, and a long list of other

stuff that need to be shared by applications and services. You will also find /bin, /sbin and

/lib directories in /usr.

Information /usr/bin v. /bin

Not much nowadays. Originally, the /bin directory would contain basic commands, like ls, mv and rm; the

bare minimum to run and maintain a system whereas /usr/bin would contain stuff the users would install

and run to use the system as a work station, things like word processors, web browsers, and other apps.

Many modern Linux distributions put everything into /usr/bin and have /bin point to /usr/bin just in

case.

/srv contains data for servers. When running a web server, HTML files for sites would go into

/srv/http (or /srv/www), or running an FTP (File Transfer Protocol) server, files would go

into /srv/ftp.

/sys virtual directory like /proc and /dev, containing information from connected devices.

/tmp contains temporary files, usually placed there by running applications. The files and directories

often (not always) contain data that an application doesn’t need right now, but may need

later on. /tmp also can store users’ temporary files as it is one of the few directories hanging

off / that can be used without superuser.

/var originally named because its contents was deemed variable, in that it changed frequently. Today

it is a bit of a misnomer because there are many other directories that also contain data that

changes frequently, especially the virtual directories. Be that as it may, /var contains things

Robotics Page 105

Chapter4 Working with Files and Folders D. T. McGuiness, PhD

like logs in the /var/log sub-directories. Logs are files that register events that happen on

the system. If something fails in the kernel, it will be logged in a file in /var/log; If someone

tries to break into the computer from outside, the firewall will also log the attempt here.

Page 106 Robotics

4.9 Common Command-Line Tools and Tasks

4.9 Common Command-Line Tools and Tasks

4.9.1 The UNIX Philosophy

Starting exploring command line tools, it’s important to understand the principle behind many of the

programs we’ll be looking at. That principle, often called the UNIX philosophy, originated by Ken

Thompson, is a set of cultural norms and philosophical approaches to minimalist, modular software

development.

Figure 4.2: For anyone who is interested
in the UNIX philosopy, I would suggest
reading this book as it has parts written
by numerous people who were the original
developers of the UNIX.

Generally, these are:

� Small is beautiful,

� Make each program do one thing well,

� Build a prototype as soon as possible,

� Choose portability over efficiency,

� Store data in flat text files,

� Use software leverage to your advantage,

� Use shell scripts to increase leverage and portability,

� Avoid captive user interfaces,

� Make every program a filter.

In a nutshell, this philosophy emphasizes tools shouldn’t try to do too much. We don’t want a

tool which reads files and separates some of the text into another file and renames that file and

compresses it into an archive when it’s done, or tries to do everything that anyone can possibly

want to do. While this may sound convenient, you have to consider there would be a lot of possible

bugs and glitches of these sub-actions interacting with each other under this complex command.

Therefore, we want one tool and one tool only to do each of those tasks, so we can use those

specialised tools in any way we want to.

Of course, there are many applications that include many features and that’s fine. However,

those applications are beyond the scope of this lecture. We’re talking about the standard set

of command line tools that can be configured to work together in an incredible number of

ways.

Jack of all trades, master of none is not encouraged in programming.

To get real work done, quality is needed; tools dedicated to a specific task working together easily.

Robotics Page 107

https://en.wikipedia.org/wiki/Unix_philosophy

Chapter4 Working with Files and Folders D. T. McGuiness, PhD

Think of an assembly line where one machine does one task and then passes the product onto the

next specialized machine, rather than one complicated robot doing many different tasks on the same

item.

The point here is not that we have one multifunction generalist program. We want to be able to

incorporate the right tools into doing a task as flexibly as possible, and as we’ll see in a little bit,

this philosophy underlies a lot of how you work at the command line.

You will use one program to read text from a file, then send it to a program that filters certain text.

Then the output of that program gets processed, so that it doesn’t have duplicate lines and then

the result of that will get written back to a file.

Modularity and flexibility are features, not limitations, of working at the command line. However,

just because programmers strive for simplicity in their programming, it doesn’t mean they can’t have

Easter eggs in them. In the terminal just type in:

C.R. 26

bash1 apt help

APT (Advanced Packaging Tools) is used to install updates and utilities and has Super Cow Powers.

text1 apt 2.7.14 (arm64)

2 Usage: apt [options] command

3

4 apt is a commandline package manager and provides commands for

5 searching and managing as well as querying information about packages.

6 It provides the same functionality as the specialized APT tools,

7 like apt-get and apt-cache, but enables options more suitable for

8 interactive use by default.

9

10 Most used commands:

11 list - list packages based on package names

12 search - search in package descriptions

13 show - show package details

14 install - install packages

15 reinstall - reinstall packages

16 remove - remove packages

17 autoremove - automatically remove all unused packages

18 update - update list of available packages

19 upgrade - upgrade the system by installing/upgrading packages

20 full-upgrade - upgrade the system by removing/installing/upgrading packages

21 edit-sources - edit the source information file

22 satisfy - satisfy dependency strings

23

24 See apt(8) for more information about the available commands.

25 Configuration options and syntax is detailed in apt.conf(5).

26 Information about how to configure sources can be found in sources.list(5).

27 Package and version choices can be expressed via apt_preferences(5).

28 Security details are available in apt-secure(8).

29 This APT has Super Cow Powers.

Page 108 Robotics

4.9 Common Command-Line Tools and Tasks

4.9.2 Connecting Commands with Pipes

At the command line, we use pipes (|) to take the output of one command and send it to another.

Think of commands as little processing nodes which do one particular thing and pipes as connections

between those nodes. Searching on the internet should give you a good idea of where to find it on

your keyboard depending on the type, if you need to. We type this character in between commands

that we want to be piped together. Throughout the course, put a space on either side of it so it’s

easier to see, but it doesn’t need to have spaces. Take a look at using pipes at the command line.

To do this, we need to know a few more commands. The first is echo, which prints out whatever

you give it. For example, write echo "hello", and that works as promised.

C.R. 27

bash1 echo "hello"

text1 hello

Now, write that command again and this time add a pipe character to send the output to the

command wc for word count. And here, instead of the output from echo, we see the output of the

wc program responding to the input from the echo command.

C.R. 28

bash1 echo "hello" | wc

text1 1 1 6

What wc is telling here is that there is one line of text, one word, and six characters. To change the

output type echo "hello, world! from the command-line interface" and pipe that to wc.

That’s one line, six words, 45 characters.

C.R. 29

bash1 echo "hello, world! from the command-line interface" | wc

text1 1 6 46

As can be seen the sentence contain 45 characters but 46 is printed as wc counts an invisible

character at the end of the string called a new line in addition to the characters we sent. A command

can be piped to any other command, and usually it’ll do something whether it is useful or not.

4.9.3 Viewing Text Files with cat, head, tail, and less

The majority of tasks we will be working with at the command line will involve text files or text

output. Therefore, it’s important to know the following commands to check out the contents of

text files. The first is called cat, stands for concatenate.

Robotics Page 109

Chapter4 Working with Files and Folders D. T. McGuiness, PhD

Information The cat Command

A standard utility which reads files sequentially, writing them to standard output.

Basically when programmers talk about concatenation, they mean sticking two or more things

together, and cat can do exactly do just that. But more often than not, it is used to print the

contents of a file to the screen. It’s also helpful to get the contents of a text file into a series of

piped commands. Depending on the operating system, there will be different files available to you.

Normally, as an administrator we tend to use cat to look at a log file or something similar. But

here, for the sake of simplicity, we will use a simple text file inside the Linux Tutorial Folder. The

Poem.txt file. For the curious, the poem is “Stopping by Woods on a Snowy Evening” by Robert

Frost (a).

Page 110 Robotics

https://www.poetryfoundation.org/poems/42891/stopping-by-woods-on-a-snowy-evening

4.10 Advanced Topics

4.10 Advanced Topics

4.10.1 Find Linux Distribution and Kernel Information

Up until now, almost everything we’ve done has been distribution independent.

That is, it hasn’t mattered if you’re running CentOS, Fedora, Ubuntu, or another distribution of

Linux. But it’s good to know what environment you’re working with, in case you need to make some

changes to the system or to install software. If you find yourself in an environment that you don’t

know about, it’s pretty easy to figure out what distribution you’re using. This information is kept in

files inside the /etc folder. What it’s called specifically varies by distro, but we can use a wildcard to

target the names of these files and see what’s inside them. First, let’s take a look at what these

files are.

Let’s write the following

C.R. 30

bash1 ls -lah /etc/*release

text1 -rw-r--r-- 1 root root 104 Feb 5 16:08 /etc/lsb-release

2 lrwxrwxrwx 1 root root 21 Feb 5 16:08 /etc/os-release -> ../usr/lib/os-release

In my case, I have two (2) files here, lsb-release and os-release, which is a link to another file in

/usr/lib.

Let’s see what information’s in there.

To do that, we’ll type cat /etc/*release.

C.R. 31

bash1 cat /etc/*release

text1 DISTRIB_ID=Ubuntu

2 DISTRIB_RELEASE=24.04

3 DISTRIB_CODENAME=noble

4 DISTRIB_DESCRIPTION="Ubuntu 24.04.2 LTS"

5 PRETTY_NAME="Ubuntu 24.04.2 LTS"

6 NAME="Ubuntu"

7 VERSION_ID="24.04"

8 VERSION="24.04.2 LTS (Noble Numbat)"

9 VERSION_CODENAME=noble

10 ID=ubuntu

11 ID_LIKE=debian

12 HOME_URL="https://www.ubuntu.com/"

13 SUPPORT_URL="https://help.ubuntu.com/"

14 BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"

15 PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"

Robotics Page 111

Chapter4 Working with Files and Folders D. T. McGuiness, PhD

text16 UBUNTU_CODENAME=noble

17 LOGO=ubuntu-logo

Which lists the contents of all of the files in the /etc folder that end with the word release.

On different distributions, there’ll be different numbers and names of files that match this

wildcard, but they’ll contain the information we need.

Here I can see that I’m using Ubuntu, version 20.04 LTS (Long Term Service), Focal Fossa.

On other systems, we’d see slightly different information here.

Another important piece of information to know about a system is what version of the kernel you’re

using.

You can find that information with the uname command, Using the dash a (-a) option to show all

the information.

C.R. 32

bash1 uname -a

text1 Linux 807fe6353460 6.10.14-linuxkit #1 SMP Fri Nov 29 17:22:03 UTC 2024 aarch64 aarch64

aarch64 GNU/Linux↪→

This shows the type of system, the host name, the version of the kernel, when it was built, the

architecture of the system and so on.

This kind of information can be helpful if you’re troubleshooting something.

Again, if you’ve set up a system, chances are good you know what kind of software it’s running.

But if for some reason you don’t, now we’ve seen how to figure it out.

4.10.2 Find System Hardware and Disk Information

It is important to finding out some information about the system you’re working with. If you’re

using a physical computer, or a virtual machine you set up for yourself, you have some knowledge

about the hardware it has, like how much RAM (Random Access Memory) it has, what kind of CPU

(Central Processing Unit) it has, and how much hard drive space there is. But if you’re working on

a remote system or you are an administrator of a machine you have yet to have working knowledge

of, it can be helpful to get a sense of what your resources are and what hardware system has.

First, let’s find out how much RAM this machine has. To do this, use the free command with the

-h option, which gives us values in human readable numbers.

Page 112 Robotics

4.10 Advanced Topics

C.R. 33

bash1 free -h

text1 total used free shared buff/cache available

2 Mem: 7.7Gi 479Mi 7.1Gi 1.5Mi 294Mi 7.2Gi

3 Swap: 1.0Gi 0B 1.0Gi

Here, under total memory, we can see that this machine has two gigabytes of memory. Next, let’s

take a look at what our processor resources are. There is a file in the /proc directory called cpuinfo,

so let’s take a look at that. To access this information write cat /proc/cpuinfo.

C.R. 34

bash1 cat /proc/cpuinfo | head -8

text1 processor : 0

2 BogoMIPS : 48.00

3 Features : fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid

asimdrdm jscvt fcma lrcpc dcpop sha3 asimddp sha512 asimdfhm dit uscat ilrcpc flagm

ssbs sb paca pacg dcpodp flagm2 frint

↪→

↪→

4 CPU implementer : 0x61

5 CPU architecture: 8

6 CPU variant : 0x0

7 CPU part : 0x000

8 CPU revision : 0

There is a lot of information here. Scroll up a little bit and I can see that I’m using an Intel Xeon

processor at 3.5 gigahertz (GHz). And under CPU cores, I can see that this machine has four (4)

CPU core. I can also find out how much space is taken up and how much is available on the system’s

hard drive. For that, use the df command with the -h option, again, to show human readable sizes.

C.R. 35

bash1 df -h

text1 Filesystem Size Used Avail Use% Mounted on

2 overlay 59G 32G 24G 58% /

3 tmpfs 64M 0 64M 0% /dev

4 shm 512M 0 512M 0% /dev/shm

5 /dev/vda1 59G 32G 24G 58% /etc/hosts

6 /run/host_mark/Users 461G 338G 124G 74% /home/ubuntu/Desktop/Host

7 tmpfs 3.9G 0 3.9G 0% /proc/scsi

8 tmpfs 3.9G 0 3.9G 0% /sys/firmware

This shows space across a few different volumes, but the most interesting one to me is slash (/)

or root, since that’s where my user data is, and it’s where you are likely to be taking up space if I

installed software. The rest of these are managed by the system, so you don’t need to worry about

those. You can also use the du command to see how much space files and folders take up on your

system. Let’s have a look at how much space is taken up across my whole system. I’ll write sudo du

/ -hd1 I have to use sudo, because my user can’t see into all of the folders at the root of the drive.

Robotics Page 113

Chapter4 Working with Files and Folders D. T. McGuiness, PhD

Then there is the du command for disk usage, and then slash (/), which is the level I want to start

from, right at the root. The dash h (-h) option gives me sizes in human readable formats, kilobytes,

megabytes, gigabytes, and so on, and the d option shows the du command what level of detail to

show. In this case, I’m giving it the argument of one (1), meaning just show me one level d, the

first level away from the root, adding everything up within each of those folders. Let’s take a look

Page 114 Robotics

Chapter5
Installation

Table of Contents

5.1 ROS 2 Humble Hawksbill . 115
5.2 Auto-Install Script . 119

5.1 ROS 2 Humble Hawksbill

5.1.1 Introduction

This section is written and edited for students who wish to install ROS on their own computers

which has Linux1 1Of course, it is assumed
the student has Ubuntu
22.04 installed. If any
other system is installed
such as Arch, or NixOs,
then I would like to use the
following text printed out
when a user uninstalls their
boot-loader from their
computer: “Bailing out,
you are on your own. Good
Luck.”

on it. For student who will use Docker containers, you can skip this chapter.

Before we tackle the wonderful world of robot programming, we must first install all the essential

tools we need to make sure it works. Below are the instructions on how to do it.

Please read the instructions first and then apply the commands as required by the instructions.

This is not just a one-time warning and should be carefully noted as Linux while powerful can

be unforgiving if one does NOT take good care and attention to what they type to the

terminal.

5.1.2 Setting up the Local

Make sure you have a locale which supports UTF-8.2 2A character encoding
standard used for
electronic communication.
Defined by the Unicode
Standard, the name is
derived from Unicode
Transformation Format -
8-bit. Almost every web
page is stored in UTF-8.

If you are in a minimal environment (such as a

docker container), the locale may be something minimal like Portable Operating System Interface

https://www.unicode.org/standard/standard.html
https://www.unicode.org/standard/standard.html

Chapter5 Installation D. T. McGuiness, PhD

(POSIX). We test with the following settings. However, it should be fine if you’re using a different

UTF-8 supported locale.

To start with installation, if you are using a GUI open up your terminal (Ctrl + Alt + T).

C.R. 1

bash1 locale # check for UTF-8

2

3 sudo apt update && sudo apt install locales

4 sudo locale-gen en_US en_US.UTF-8

5 sudo update-locale LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8

6 export LANG=en_US.UTF-8

7

8 locale # verify settings

Information The POSIX Standard

POSIX is a set of standard OS interfaces based on the Unix operating system. The most recent POSIX

specifications IEEE Std 1003.1-2024 defines a standard interface and environment that can be used by an

OS to provide access to POSIX-compliant applications. The standard also defines a command interpreter33such as the shell.

and common utility programs. POSIX supports application portability at the source code level so applications

can be built to run on any POSIX-compliant OS.

5.1.3 Setting Up the Source Files

Before we can begin working with ROS, we must install all the necessary files and dependencies

required. For these lectures we will install ROS Humble Hawksbill which is currently available for

Ubuntu Jammy (22.04 LTS).

While currently there are more up-to-date version of ROS available such as Jammy, due to its long

term support and established compatibility, we will be using ROS Humble.

It is heavily recommended to be on Ubuntu 22.04 LTS as ROS Humble is only officially

supported on this version. It is possible to compile ROS on other Ubuntu or Linux distributions,

however, you need to compile the binaries yourself.

We will need to add the ROS apt repository to your system.

Information The Advanced Package Manager

A free-software user interface that works with core libraries to handle the installation and removal of software

on Debian and Debian-based Linux distributions. It is just another package manager.

Page 116 Robotics

https://docs.ros.org/en/foxy/Releases/Release-Humble-Hawksbill.html
https://releases.ubuntu.com/jammy/

5.1 ROS 2 Humble Hawksbill

First ensure that the Ubuntu Universe4 4A snapshot of the free,
open-source, and Linux
world. It houses almost
every piece of open-source
software, all built from a
range of public sources

repository is enabled.

C.R. 2

bash1 sudo apt install software-properties-common

2 sudo add-apt-repository universe

Now add the ROS GPG key with apt.

Information GPG

A hybrid-encryption software which uses a combination of conventional symmetric-key cryptography for

speed, and public-key cryptography for ease of secure key exchange, typically by using the recipient’s public

key to encrypt a session key which is used only once.

C.R. 3

bash1 sudo apt update && sudo apt install curl -y

2 sudo curl -sSL \

3 https://raw.githubusercontent.com/ros/rosdistro/master/ros.key \

4 -o /usr/share/keyrings/ros-archive-keyring.gpg

Then add the repository to your sources list. This list contains all the paths your system will scan

when it is looking for a package or to look for updates.

C.R. 4

bash1 echo "deb [arch=$(dpkg --print-architecture) \

2 signed-by=/usr/share/keyrings/ros-archive-keyring.gpg] \

3 http://packages.ros.org/ros2/ubuntu \

4 $(. /etc/os-release && echo $UBUNTU_CODENAME) main" | \

5 sudo tee /etc/apt/sources.list.d/ros2.list > /dev/null

Information The echo Command

A command that outputs the strings that are passed to it as arguments. It is a useful command to let the

user know what process is going on with the current running program or allows the insertion of text to other

files.

5.1.4 Install ROS 2 Packages

Update your apt repository caches after setting up the repositories as it may NOT have the latest

version on it. The ROS packages are built on frequently updated Ubuntu systems.

It is always recommended that you ensure your system is up to date before installing new

packages.

Robotics Page 117

Chapter5 Installation D. T. McGuiness, PhD

C.R. 5

bash1 sudo apt update && sudo apt upgrade

Once updated you have a few options on which type to install (1st is recommended)

Desktop Install It install all the necessary components and software packages such as ROS, RViz,

demos, tutorials.

sudo apt install ros-humble-desktop

Development tools Compilers and other tools to build ROS packages.

sudo apt install ros-dev-tools

This setup may take some time as the file download size is around 2GB.

5.1.5 Setting Up the Environment

Once the software is installed we still need to tell our shell where the software is so we can call it in

our session. For this we need to source a script. Set up your environment by sourcing the following

file in your terminal (Ctrl + Alt + T).

C.R. 6

bash1 source /opt/ros/humble/setup.bash

Alternatively, if you prefer to automate this action, simply type the following code in your terminal:

C.R. 7

bash1 echo "source /opt/ros/humble/setup.bash" » "~/.bashrc"

The aforementioned command simply writes the command to the last line of a document called

.bashrc which is a script that runs whenever you open a new terminal window.

The .bashrc file is a script file that’s executed when a user logs in. The file itself contains

a series of configurations for the terminal session. This includes setting up or enabling:

colouring, completion, shell history, command aliases, and more.

It is a hidden file and simple ls command won’t show the file.

Page 118 Robotics

5.2 Auto-Install Script

5.2 Auto-Install Script

As a bonus, if you have read the document before doing copy and pasting, you can use the

rosinstall.sh provided to you to automatically install everything required for this course.

C.R. 8

bash1 #!/bin/bash

2

3 # First check your Ubuntu Version

4 # For maximum compatability with ROS it needs to be 22.04 LTS

5

6 # Creating log for troubleshooting

7 echo "###### BEGIN ATTEMPT #######" »install_log.txt

8

9 echo "Welcome to ROS 2 Automated Installation"

10 echo ""

11 echo ""

12

13 # Accessing the Ubuntu version using AWK and piping it to grep for Regex

14 version=$(

15 awk "/VERSION_ID/" IGNORECASE=1 /etc/*release |

16 grep -Eo "[[:digit:]]+([.][[:digit:]]+)?"

17)

18

19 # Checks version for ROS Compliance

20 if [["${version}" == *"22.04"*]]; then

21 echo "Version is supported."

22 sleep 1

23 echo "Continuing installation..."

24 sleep 1

25 else

26 echo "Your version: "$version", What is needed: 22.04"

27 echo "I am sorry but your version is not supported."

28 echo "This install script will terminate"

29 exit

30

31 fi

32

33 echo ""

34 echo "Installing UTF-8 Compliance ..."

35

36 {

37 locale # check for UTF-8

38

39 sudo apt update

40 sudo apt install locales

41 sudo locale-gen en_US en_US.UTF-8

42 sudo update-locale LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8

43 export LANG=en_US.UTF-8

44

45 locale # verify settings

46 } &»install_log.txt

47

Robotics Page 119

Chapter5 Installation D. T. McGuiness, PhD

C.R. 9

bash48 echo ""

49 echo "Enabling Ubuntu Universe Repositories..."

50

51 {

52 sudo apt install software-properties-common

53 echo | sudo add-apt-repository universe

54 } &»install_log.txt

55

56 echo ""

57 echo "Adding ROS 2 GPG Keys ..."

58

59 {

60 sudo apt update

61 sudo apt install curl -y

62 sudo curl -sSL \

63 https://raw.githubusercontent.com/ros/rosdistro/master/ros.key \

64 -o /usr/share/keyrings/ros-archive-keyring.gpg

65 } &»install_log.txt

66

67 echo ""

68 echo "Adding ROS 2 to repository ..."

69

70 {

71 echo "deb [arch=$(dpkg --print-architecture) \

72 signed-by=/usr/share/keyrings/ros-archive-keyring.gpg] \

73 http://packages.ros.org/ros2/ubuntu \

74 $(. /etc/os-release && echo $UBUNTU_CODENAME) main" \

75 | sudo tee /etc/apt/sources.list.d/ros2.list >/dev/null

76 } &»install_log.txt

77

78 echo ""

79 echo "Getting Updates ..."

80

81 {

82 sudo apt update

83 echo yes | sudo apt upgrade

84 } &»install_log.txt

85

86 echo ""

87 echo "Installing ROS ..."

88

89 {

90 echo yes | sudo apt install ros-humble-desktop

91 yes | sudo apt install ros-dev-tools

92 } &»install_log.txt

93

94 {

95 sudo apt install dbus-x11

96 } &»install_log.txt

97

98 echo ""

99 echo "Sourcing ROS file ..."

100 sleep 1

Page 120 Robotics

5.2 Auto-Install Script

C.R. 10

bash101

102 echo "source /opt/ros/humble/setup.bash" »~/.bashrc

103

104 echo ""

105 echo "Removing unnecessary files ..."

106 sleep 1

107 {

108 yes | sudo apt autoremove

109 } &»install_log.txt

Robotics Page 121

Chapter6
ROS Concepts

Table of Contents

6.1 Introduction . 123
6.2 Publisher and Subscriber Architecture . 124
6.3 Nodes - The Building Blocks . 125
6.4 The Discovery Process . 126
6.5 Communication Between Nodes . 127
6.6 Topics . 133
6.7 Services . 135
6.8 Actions . 137
6.9 Parameters . 139
6.10 Working with Command Line . 142
6.11 Launch File . 144

6.1 Introduction

Before diving into the vast world of ROS, it is worth looking at some concepts and ideas which are

used. Most of the concept we will cover will be relatively high-level and therefore are here to give

you more of an idea of the cogs and gears working in the system.

In a nutshell, ROS is a middle-ware1 1a software that facilitates
communication and data
management between
applications, systems, and
databases.

software based on a strongly-typed, anonymous publish/-
subscribe mechanism which allows for message passing between different processes.

At the heart of any ROS system is the ROS graph where the ROS graph refers to the network of

nodes in a ROS system and the connections between them by which they communicate.

Chapter6 ROS Concepts D. T. McGuiness, PhD

6.2 Publisher and Subscriber Architecture

A common design pattern in used concurrency programming is the producer-consumer architecture,

where;

� One or more threads or processes act as a producer, where it adds elements to some shared

data structure,

� One or more other threads act as a consumer where it removes items from that structure and

does something with them.

To demonstrate, imagine the producer is preparing coffee for the customers. This makes the

customers, consumers. As the barista makes coffee, it creates a queue of coffees waiting to be

consumed by the customers. Queues operate on a simple principle called a First In First Out ().

This means items are removed in the same order that they’re put into the queue. The first item

added, in this case coffee, will be the first item to be removed. So when a customer wants to

consume another cup of coffee, they’ll grab one from the end of the line because it’s been in the

queue the longest. The coffee represent elements of data for the consumer thread to process or

perhaps packaged tasks for the consumer to execute.

An important factor to consider is the need of a protection to make sure the producer won’t try to

add data to the queue when it’s full and the consumer won’t try to remove data from an empty

buffer. Some programming languages may include implementations of a queue that’s considered

thread-safe and handles all of these challenges under the hood, so we don’t have to, but some

languages does not include that support. Therefore we need to use the combination of a mutex

(mutual exclusion) and condition variables to implement your own thread-safe, synchronised queue.

We may run into scenarios where the producer cannot be paused if the queue fills up, for example,

when it is an external source of streaming data that we can’t slow down, so it’s important to

consider the rate at which items are produced and consumed from the queue. If the consumer can’t

keep up with production, then we face a buffer overflow, and we’ll lose data. Some programming

languages offer implementations of unbounded queues, which are implemented using linked lists to

have an advertised unlimited capacity. But keep in mind, even those will be limited by the amount of

physical memory in the computer. The rate at which the producer is adding items may not always

be consistent. For example, in network applications, data might arrive in bursts of network packets,

which fill the queue quickly. But if those bursts occur infrequently, the consumer has time to catch

up between bursts.

We should consider the average rate at which items are produced and consumed as we want the

average rate of production to be less than the average rate of consumption. But if more steps were

required to process this data, then we could expand our simple producer-consumer setup into a

pipeline of tasks. A pipeline consists of a chain of processing elements arranged so that the output

of each element is the input to the next one. It’s basically a series of producer-consumer pairs

connected together with some sort of buffer, like a queue, between each consecutive element.

Page 124 Robotics

6.3 Nodes - The Building Blocks

6.3 Nodes - The Building Blocks

A node is an actor in the overall ROS graph, which uses a client library2 2This could either be
rospy or roscpp
depending on the chosen
language.

to communicate with other

nodes.

Nodes can also communicate with other nodes within the same process, in a different process,

or on a different machine and are considered the unit of computation in a ROS graph as

each node should do one logical thing.

Nodes can either publish to named topics to deliver data to other nodes, or subscribe to named

topics to get data from other nodes. They can also act as a service client to have another node

perform a computation on their behalf, or as a service server to provide functionality to other nodes.

For long-running calculations, a node can act as an action client to have another node perform it

on their behalf, or as an action server to provide functionality to other nodes. Nodes can provide

configurable parameters to change behaviour during run-time.

Nodes are often a complex combination of publishers, subscribers, service servers, service

clients, action servers, and action clients, all at the same time.

An advantage of using nodes is that it allows language agnostic programming. It means we can

write one node in Python, another node in C++, and both can communicate without any problem.

In addition they provide a great fault tolerance. As nodes only communicate through ROS, they are

not directly linked. If one node crashes, it will not make the other nodes crash.

For all these actions to work, a node needs to know where others are. Therefore, to achieve this we

use a method called a distributed discovery process.

Robotics Page 125

Chapter6 ROS Concepts D. T. McGuiness, PhD

6.4 The Discovery Process

Discovery of nodes happens automatically through the underlying middle-ware of ROS. The sequence

of operations can be summarised as follows:

1. When a node is started, it advertises its presence to other nodes on the network with the same

ROS domain.33This is set with the
ROS_DOMAIN_ID

environment variable which
is used to isolate multiple
ROS systems from each

other on the same network.

Nodes respond to this advertisement with information about themselves so that

the appropriate connections can be made and the nodes can communicate.

2. Nodes periodically announce their presence so connections can be made with new-found

entities, even after the initial discovery period.

3. Nodes advertise to other nodes when they go offline.

Nodes will only establish connections with others having compatible Quality of Service.44In this context it means
the description or

measurement of the overall
performance of a service,

such as a telephony or
computer network, or a

cloud computing service,
particularly the

performance seen by the
users of the network.

As an example to see whats going on let’s used the built-in example of talker-listener. As the

name implies, one node advertises the presence and the other listens.

C.R. 1

bash1 . ~/ros2_humble/install/local_setup.bash

2 ros2 run demo_nodes_cpp talker

text1 [INFO] [1748930700.789182596] [talker]: Publishing: 'Hello World: 1'

2 [INFO] [1748930701.785043679] [talker]: Publishing: 'Hello World: 2'

3 [INFO] [1748930702.785231597] [talker]: Publishing: 'Hello World: 3'

4 [INFO] [1748930703.785897764] [talker]: Publishing: 'Hello World: 4'

Now it is running in one, open another terminal window, and type:

C.R. 2

bash1 . ~/ros2_humble/install/local_setup.bash

2 ros2 run demo_nodes_py listener

text1 [INFO] [1748930759.815469762] [listener]: I heard: [Hello World: 60]

2 [INFO] [1748930760.787999512] [listener]: I heard: [Hello World: 61]

3 [INFO] [1748930761.787663179] [listener]: I heard: [Hello World: 62]

4 [INFO] [1748930762.787127847] [listener]: I heard: [Hello World: 63]

Running the C++ talker node in one terminal will publish messages on a topic, and the Python

listener node running in another terminal will subscribe to messages on the same topic.

We should see that these nodes discover each other automatically, and begin to exchange messages.

Page 126 Robotics

6.5 Communication Between Nodes

6.5 Communication Between Nodes

6.5.1 Description

ROS applications generally communicate through interfaces of one of three (3) types:

1. topics,

2. services,

3. actions.

ROS uses a simplified description language5 5interface definition
language.

to describe these interfaces. This description allows

simplification for ROS tools to automatically generate source code for the interface type in several

target languages.6 6i.e., Python, C++In this document we will describe the supported types:

msg simple text files describing the fields of a ROS message. They are used to generate source

code for messages in different languages.

srv describes a service and composed of two (2) parts:

� a request, and

� a response.

The request and response are message declarations.

action describes actions and composed of three (3) parts:

� a goal,

� a result, and

� a feedback.

Each part is a message declaration itself.

6.5.2 Messages

Messages are a way for a ROS node to send data on the network to other ROS nodes, without

expecting any responses.

As an example, let’s say a ROS node reads temperature data from a sensor. It can then

publish that data on the ROS network using a Temperature message. Other nodes on

the ROS network can subscribe to that data and receive the Temperature message.

Robotics Page 127

Chapter6 ROS Concepts D. T. McGuiness, PhD

Messages are described and defined in .msg files in the msg/ directory of a ROS package.

.msg files are composed of two (2) parts:

Fields
Information about a data type and its name

Constants
Similar to other languages, define an unchangeable variable.

Fields

Each field consists of a type and a name, separated by a space. The syntax for this would be the

following:

C.R. 3

text1 fieldtype1 fieldname1

2 fieldtype2 fieldname2

3 fieldtype3 fieldname3

For example, lets say we want to define a 32-bit integer and a string variable. For that we would

have to write the following:

C.R. 4

text1 int32 my_int

2 string my_string

Field Types As with most statically-typed languages we need to define what type of variables we

are working. In ROS, the fields type can be one of two (2) things:

� A built-in type,

� names of Message descriptions defined on their own, such as geometry_msgs/PoseStamped

The following is a table of all currently built-in variable types.

Table 6.1: Current types supported by ROS Humble.

bool bool builtins.bool boolean

byte uint8_t builtins.bytes* octet

char char builtins.int* char

float32 float builtins.float* float

Type name C++ Python DDS type

Continued on next page

Page 128 Robotics

6.5 Communication Between Nodes

Table 6.1: Current types supported by ROS Humble. (Continued)

float64 double builtins.float* double

int8 int8_t builtins.int* octet

uint8 uint8_t builtins.int* octet

int16 int16_t builtins.int* short

uint16 uint16_t builtins.int* unsigned short

int32 int32_t builtins.int* long

uint32 uint32_t builtins.int* unsigned long

int64 int64_t builtins.int* long long

uint64 uint64_t builtins.int* unsigned long long

string std::string builtins.str string

wstring std::u16string builtins.str wstring

Type name C++ Python DDS type

In addition, array-like feature are also supported

Type name C++ Python DDS type

static array std::array<T, N> builtins.list* T[N]

unbounded dynamic array std::vector builtins.list sequence

bounded dynamic array custom_class<T, N> builtins.list* sequence<T, N>

bounded string std::string builtins.str* string

All types which are more permissive than their ROS definition enforce the ROS constraints

in range and length by software.

Example of message definition using arrays and bounded types:

C.R. 5

text1 int32[] unbounded_integer_array

2 int32[5] five_integers_array

3 int32[<=5] up_to_five_integers_array

4

5 string string_of_unbounded_size

6 string<=10 up_to_ten_characters_string

7

8 string[<=5] up_to_five_unbounded_strings

9 string<=10[] unbounded_array_of_strings_up_to_ten_characters_each

10 string<=10[<=5] up_to_five_strings_up_to_ten_characters_each

Robotics Page 129

Chapter6 ROS Concepts D. T. McGuiness, PhD

Naming Conventions There are some restrictions in how these variables are named and therefore

are worth of mention. Field names must be lowercase alphanumeric characters with underscores
for separating words. They must start with an alphabetic character, and they must NOT end

with an underscore or have two (2) consecutive underscores.

Default Values Default values can be set to any field in the message type. Currently default

values are NOT supported for string arrays and complex types.77types NOT present in
the built-in-types which

applies to all nested
messages. Defining a default value is done by adding a third element to the field definition line. For example:

C.R. 6

text1 fieldtype fieldname fielddefaultvalue

An example implementation would be:

C.R. 7

text1 uint8 x 42

2 int16 y -2000

3 string full_name "John Doe"

4 int32[] samples [-200, -100, 0, 100, 200]

For example, in the first line we define a 8-bit unsigned integer (uint8), call it x , and give it a

default value of 42.

String values must be defined in ' or " quotes and currently string values are NOT escaped.

Constants Each constant definition is like a field description with a default value, except that this

value can never be changed programmatically. This value assignment is indicated by use of an

equal (=) sign. The syntax is:

C.R. 8

text1 constanttype CONSTANTNAME=constantvalue

For example:

C.R. 9

text1 int32 X=123

2 int32 Y=-123

3 string FOO="foo"

4 string EXAMPLE='bar'

Constants names have to be UPPERCASE.

Page 130 Robotics

6.5 Communication Between Nodes

Services

Services are a request/response communication, where the client (requester) is waiting for the server

(responder) to make a short computation and return a result. Services are described and defined in

.srv files in the srv directory of a ROS package.

A service description file consists of a request and a response msg type, separated by ---. Any two

.msg files concatenated with a --- are a legal service description. Here is a very simple example of

a service that takes in a string and returns a string:

C.R. 10

text1 uint32 request

2 ---

3 uint32 response

We can of course get much more complicated:8 8if we want to refer to a
message from the same
package we must NOT
mention the package name.

C.R. 11

text1 uint32 a

2 uint32 b

3 ---

4 uint32 sum

We cannot embed another service inside of a service.

Actions

Actions are a long-running request/response communication, where the action client (requester) is

waiting for the action server (the responder) to take some action and return a result. In contrast

to services, actions can be long-running,9 9This could be many
seconds up to minutes.

provide feedback while they are happening, and can be

interrupted.

Action definitions have the following form:

C.R. 12

text1 <request_type> <request_fieldname>

2 ---

3 <response_type> <response_fieldname>

4 ---

5 <feedback_type> <feedback_fieldname>

Similar to services, the request fields are before and the response fields are after the first triple-dash

(---), respectively. There is also a third set of fields after the second triple-dash, which is the fields

to be sent when sending feedback. There can be:

� arbitrary numbers of request fields (including zero),

� arbitrary numbers of response fields (including zero), and

Robotics Page 131

Chapter6 ROS Concepts D. T. McGuiness, PhD

� arbitrary numbers of feedback fields (including zero).

The <request_type>, <response_type>, and <feedback_type> follow all of the same

rules as the <type> for a message.

The <request_fieldname>, <response_fieldname>, and <feedback_fieldname> fol-

low all of the same rules as the <fieldname> for a message.

As an example, the Fibonacci action definition contains the following:

C.R. 13

text1 int32 order

2 ---

3 int32[] sequence

4 ---

5 int32[] sequence

This is an action definition where the action client is sending a single int32 field representing the

number of Fibonacci steps to take, and expecting the action server to produce an array of int32

containing the complete steps. Along the way, the action server may also provide an intermediate

array of int32 contains the steps accomplished up until a certain point.

Page 132 Robotics

6.6 Topics

6.6 Topics

Topics are one of the three (3) primary styles of interfaces provided by ROS. Topics should be
used for continuous data streams, like sensor data, robot state, etc. As stated earlier, ROS is a

strongly-typed, anonymous publish/subscribe system. Let’s break down that sentence and explain it

a bit more.

6.6.1 Publisher - Subscriber Architecture

A publish/subscribe system is one in which there are:

1. producers of data (publishers),

2. consumers of data (subscribers).

The publishers and subscribers know how to contact each other through the concept of a topic,

which is a common name so that the entities can find each other.

When we create a publisher, we must also give it a string which is the name of the topic and

the same goes for the subscriber.

Any publishers and subscribers that are on the same topic name can directly communicate with

each other. There may be zero or more publishers and zero or more subscribers on any particular

topic. When data is published to the topic by any of the publishers, all subscribers in the system will

receive the data.

This system is also known as a bus as it resembles a bus bar from used in power engineering.

This concept of a bus is part of what makes ROS a powerful and flexible system. Publishers and

subscribers can come and go as needed, meaning that debugging and introspection are natural

extensions to the system.

As an example, if we want to record data, we can use the ros2 bag record command. Under the

hood, ros2 bag record creates a new subscriber to whatever topic we tell it, without interrupting

the flow of data to the other parts of the system.

6.6.2 Anonymity

Another fact mentioned in the introduction is that ROS is anonymous. This means that when a

subscriber gets a piece of data, it doesn’t generally know or care which publisher originally sent it.10 10If needed though, it can
find out.The benefit to this architecture is that publishers and subscribers can be swapped out at will without

affecting the rest of the system.

Robotics Page 133

Chapter6 ROS Concepts D. T. McGuiness, PhD

6.6.3 Strongly-Typed

As a last point, the publish/subscribe system is strongly-typed. That has two (2) meanings in this

context:

� The types of each field in a ROS message are typed, and that type is enforced at various levels.

For instance, if the ROS message contains:

C.R. 14

text1 uint32 field1

2 string field2

� Then the code will ensure the field1 is always an unsigned integer and field2 is always a

string.

� The semantics of each field are well-defined.

– There is no automated mechanism to ensure this, but all of the core ROS types have

strong semantics associated with them.

– For instance, the IMU message contains a 3-dimensional vector for the measured an-

gular velocity, and each of the dimensions is specified to be in radians/second. Other

interpretations should NOT be placed into the message.

Page 134 Robotics

6.7 Services

6.7 Services

In ROS, a service refers to a remote procedure call. In other words,

a node can make a remote procedure call to another node which will do a computation

and return a result.

This structure is reflected in how a service message definition looks:

C.R. 15

text1 uint32 request

2 ---

3 uint32 response

In ROS, services are expected to return quickly, as the client is generally waiting on the result.

Services should never be used for longer running processes, in particular processes that might need

to be pre-empted for exceptional situations.

If we have a service that will be doing a long-running computation, consider using an action.

Services are identified by a service name, which looks much like a topic name.11 11but is in a different
namespace.

A service consists of

two (2) parts:

� the service server,

� the service client.

6.7.1 Service Server

A service server is the entity that will accept a remote procedure request, and perform some

computation on it. For instance, suppose the ROS message contains the following:

C.R. 16

text1 uint32 a

2 uint32 b

3 ---

4 uint32 sum

The service server would be the entity that receives this message, adds a and b together, and returns

the sum.

There should only ever be one (1) service server per service name. It is undefined which

service server will receive client requests in the case of multiple service servers on the same

service name.

Robotics Page 135

Chapter6 ROS Concepts D. T. McGuiness, PhD

Service Client

A service client is an entity that will request a remote service server to perform a computation on

its behalf. Following the previous example, the service client is the entity that creates the initial

message containing a and b, and waits for the service server to compute the sum and return the

result.

Unlike service server, there can be a number of service clients using the same service name.

Page 136 Robotics

6.8 Actions

6.8 Actions

In ROS, an action refers to a long-running remote procedure call with feedback and the ability to

cancel or pre-empt the goal. As an example, the high-level state machine running a robot may call

an action to tell the navigation subsystem to travel to a way point, which may take several seconds,

or even minutes to do. Along the way, the navigation subsystem can provide feedback on how far

along it is, and the high-level state machine has the option to cancel or preempt the travel to that

way point.

This structure is reflected in how an action message definition looks:

C.R. 17

text1 <request_type> <request_fieldname>

2 ---

3 <response_type> <response_fieldname>

4 ---

5 <feedback_type> <feedback_fieldname>

In ROS, actions are expected to be long running procedures, as there is overhead in setting up and

monitoring the connection.

If we need a short running remote procedure call, consider using a service instead.

Actions are identified by an action name, which looks much like a topic name (but is in a different

namespace) and consists of two parts:

1. the action server,

2. the action client.

6.8.1 Action Server

The action server is the entity that will accept the remote procedure request and perform some

procedure on it. It is also responsible for sending out feedback as the action progresses and should

react to cancellation/preemption requests.

For instance, consider an action to calculate the Fibonacci sequence with the following interface we

looked at previously:

C.R. 18

text1 int32 order

2 ---

3 int32[] sequence

4 ---

5 int32[] sequence

Robotics Page 137

Chapter6 ROS Concepts D. T. McGuiness, PhD

The action server is the entity that receives this message, starts calculating the sequence up to

order (providing feedback along the way), and finally returns a full result in sequence.

There should only ever be one action server per action name. It is undefined which action

server will receive client requests in the case of multiple action servers on the same action

name.

6.8.2 Action Client

An action client is an entity that will request a remote action server to perform a procedure on

its behalf. Following the previous example, the action client is the entity that creates the initial

message containing the order, and waits for the action server to compute the sequence and return it

(with feedback along the way).

Unlike action server, there can be a number of action clients using the same action name.

Page 138 Robotics

6.9 Parameters

6.9 Parameters

Parameters in ROS are associated with individual nodes. Parameters are used to configure nodes

at startup, and during runtime without changing the code. The lifetime of a parameter is tied to

the lifetime of the node.12 12though the node could
implement some sort of
persistence to reload values
after restart.

Parameters are addressed by node name, node namespace, parameter
name, and parameter namespace.

Providing a parameter namespace is optional.

Each parameter consists of a key, a value, and a descriptor. The key is a string and the value is

one of the following types:

bool, int64, float64, string, byte[], bool[], int64[], float64[] or string[].

By default all descriptors are empty, but can contain parameter descriptions, value ranges, type

information, and additional constraints.

6.9.1 A Detailed Look

Declaring Parameters

By default, a node needs to declare all of the parameters that it will accept during its lifetime.

We do this so the type and name of the parameters are well-defined at node startup time,

which reduces the chances of misconfiguration later on.

For some types of nodes, not all of the parameters will be known ahead of time. In these cases,

the node can be instantiated with allow_undeclared_parameters set to true, which will allow

parameters to be get and set on the node even if they haven’t been declared.

Types of Parameters

Each parameter on a ROS node has one of the pre-defined parameter types as mentioned.

By default, any attempts to change the type of a declared parameter at runtime will fail.
This prevents common mistakes, such as putting a boolean value into an integer parameter.

If a parameter needs to be multiple different types, and the code using the parameter can handle it,

this default behaviour can be changed. When the parameter is declared, it should be declared using

a ParameterDescriptor with the dynamic_typing member variable set to true.

Robotics Page 139

Chapter6 ROS Concepts D. T. McGuiness, PhD

Parameter Callbacks

A ROS node can register two (2) different types of callbacks to be informed when changes are

happening to parameters. Both of the callbacks are optional.

1. The first is known as a set parameter callback, and can be set by calling from the node

Application Programming Interface (API),1313A way for two or more
computer programs or

components to
communicate with each

other. It is a type of
software interface, offering
a service to other pieces of

software.

add_on_set_parameters_callback. The call-

back is passed a list of immutable Parameter objects, and returns an rcl_interfaces msg

SetParametersResult .

The primary purpose of set parameter callback is to give the user the ability to inspect

the upcoming change to the parameter and explicitly reject the change.

It is important to make sure that set parameter callbacks have no side-effects. Since

multiple set parameter callbacks can be chained, there is no way for an individual

callback to know if a later callback will reject the update. If the individual callback

were to make changes to the class it is in, for instance, it may get out-of-sync with the

actual parameter. To get a callback after a parameter has been successfully changed,

we may need to look into the lower option.

2. The second type of callback is known as an on parameter event callback, and can be set

by calling on_parameter_event from the parameter client APIs. The callback is passed an
rcl_interfaces msg ParameterEvent object, and returns nothing. This callback will be called

after all parameters in the input event have been declared, changed, or deleted.

The primary purpose of on parameter event callback is to give the user the ability to

react to changes from parameters that have successfully been accepted.

6.9.2 Parameter Interaction

ROS 2 nodes can perform parameter operations through node APIs. External processes can perform

parameter operations via parameter services that are created by default when a node is instantiated.

The services that are created by default are:

node_name describe_parameters : Uses service type rcl_interfaces srv DescribeParameters . Given

a list of parameter names, returns a list of descriptors associated with the parameters.

node_name get_parameter_types : Uses service type rcl_interfaces srv GetParameterTypes . Given

a list of parameter names, returns a list of parameter types associated with the parameters.

node_name get_parameters : Uses service type rcl_interfaces srv GetParameters . Given a list of

parameter names, returns a list of parameter values associated with the parameters.

Page 140 Robotics

6.9 Parameters

node_name list_parameters : Uses service type rcl_interfaces srv ListParameters . Given an op-

tional list of parameter prefixes, returns a list of the available parameters with that prefix. If

the prefixes are empty, returns all parameters.

node_name set_parameters : Uses service type rcl_interfaces srv SetParameters . Given a list of

parameter names and values, attempts to set the parameters on the node. Returns a list of

results from trying to set each parameter; some of them may have succeeded and some may

have failed.

node_name set_parameters_atomically : Uses service type rcl_interfaces srv SetParametersAtomically .

Given a list of parameter names and values, attempts to set the parameters on the node.

Returns a single result from trying to set all parameters, so if one failed, all of them failed.

Some additional information regarding parameters are as follows:

Setting Initial Parameters Values when a Node is Running Initial parameter values can be set

when running the node either through individual command-line arguments, or through YAML files.

Information The .yaml Format

A human-readable data serialization language. It is commonly used for configuration files and in applications

where data is being stored or transmitted. Stands for YAML Ain’t Markup Language.

Setting Initial Parameters Values when a Node is Launching Initial parameter values can also

be set when running the node through the ROS 2 launch facility.

Manipulating parameter values at runtime The ros2 param command is the general way to

interact with parameters for nodes that are already running. ros2 param uses the parameter service

API as described above to perform the various operations.

Robotics Page 141

Chapter6 ROS Concepts D. T. McGuiness, PhD

6.10 Working with Command Line

ROS 2 includes a suite of command-line tools for introspecting a ROS 2 system.

The main entry point for the tools is the command ros2, which itself has various sub-commands for

introspecting and working with nodes, topics, services, and more.

To see all available sub-commands run:

C.R. 19

bash1 ros2 --help

text1 usage: ros2 [-h] [--use-python-default-buffering] Call `ros2 <command> -h` for more

detailed usage. ...↪→

2

3 ros2 is an extensible command-line tool for ROS 2.

4

5 options:

6 -h, --help show this help message and exit

7 --use-python-default-buffering

8 Do not force line buffering in stdout and instead use the python

default buffering, which might be affected by

PYTHONUNBUFFERED/-u and depends on whatever stdout is

interactive or

↪→

↪→

↪→

9 not

10

11 Commands:

12 action Various action related sub-commands

13 bag Various rosbag related sub-commands

14 component Various component related sub-commands

15 daemon Various daemon related sub-commands

16 doctor Check ROS setup and other potential issues

17 interface Show information about ROS interfaces

18 launch Run a launch file

19 lifecycle Various lifecycle related sub-commands

20 multicast Various multicast related sub-commands

21 node Various node related sub-commands

22 param Various param related sub-commands

23 pkg Various package related sub-commands

24 run Run a package specific executable

25 security Various security related sub-commands

26 service Various service related sub-commands

27 topic Various topic related sub-commands

28 wtf Use `wtf` as alias to `doctor`
29

30 Call `ros2 <command> -h` for more detailed usage.

ROS 2 uses a distributed discovery process for nodes to connect to each other. As this

process purposefully does not use a centralized discovery mechanism, it can take time for

ROS nodes to discover all other participants in the ROS graph. Because of this, there is a

Page 142 Robotics

6.10 Working with Command Line

long-running daemon in the background that stores information about the ROS graph to

provide faster responses to queries, e.g. the list of node names.

The daemon is automatically started when the relevant command-line tools are used for the

first time. We can run ros2 daemon –help for more options for interacting with the daemon.

Robotics Page 143

Chapter6 ROS Concepts D. T. McGuiness, PhD

6.11 Launch File

A ROS 2 system typically consists of many nodes running across many different processes (and even

different machines). While it is possible to run each of these nodes separately, it gets cumbersome

quite quickly.

The launch system in ROS 2 is meant to automate the running of many nodes with a single command.

It helps the user describe the configuration of their system and then executes it as described. The

configuration of the system includes what programs to run, where to run them, what arguments to

pass them, and ROS-specific conventions which make it easy to reuse components throughout the

system by giving them each a different configuration. It is also responsible for monitoring the state

of the processes launched, and reporting and/or reacting to changes in the state of those processes.

All of the above is specified in a launch file, which can be written in Python, XML, or YAML. This

launch file can then be run using the ros2 launch command, and all of the nodes specified will be

run.

Page 144 Robotics

Chapter7
Command Line Tools

Table of Contents

7.1 Setting the Environment . 145
7.2 Turtles and Graphs . 148
7.3 A Deeper Look into Nodes . 153
7.4 Working with Topics . 156
7.5 Working with Services . 161
7.6 Working with Parameters . 165
7.7 A Practical Look into Actions . 169
7.8 Launching Nodes . 173

7.1 Setting the Environment

ROS relies on the notion of combining workspaces using the shell environment.1 1In this case, of course, it
is our bash shell.

The “workspace” is

a ROS term for the location on our system where we’re developing with ROS.

� the core ROS workspace is called the underlay,

� and any subsequent local workspaces are called overlays.

When developing with ROS, we will typically have several workspaces active concurrently.

Combining workspaces makes developing against different versions of ROS, or against different

sets of packages, easier. It also allows the installation of several ROS distributions2 2or “distros”, e.g. Dashing
and Eloquent.

on the same

computer and switching between them. This is accomplished by sourcing setup files every time

we open a new shell, or by adding the source command to our shell startup script once. Without

sourcing the setup files, we won’t be able to access ROS commands, or find or use ROS packages.

Chapter7 Command Line Tools D. T. McGuiness, PhD

In other words, we won’t be able to use ROS. To source, simply type the following:

C.R. 1

bash1 # Replace ".bash" with your shell if you're not using bash

2 # Possible values are: setup.bash, setup.sh, setup.zsh

3 source /opt/ros/humble/setup.bash

The exact command depends on where we installed ROS. Of course, if we have installed

ROS using a docker container, this section can be skipped.

Sourcing the Script If we don’t want to have to source the setup file every time we open a new

shell, then we can add the command to our shell startup script:33For our case it is
.bashrc

C.R. 2

bash1 # Replace ".bash" with your shell if you're not using bash

2 echo "source /opt/ros/humble/setup.bash" » ~/.bashrc

Checking Environment Variables Sourcing ROS setup files will set several environment variables

necessary for operating ROS. If we ever have problems finding or using our ROS packages, make

sure that our environment is properly set up using the following command:

C.R. 3

bash1 printenv | grep -i ROS

Information The printenv Command

Displays the values of environment variables.

Using this command let’s check all variables like ROS_DISTRO and ROS_VERSION are set.

text1 ROS_VERSION=2

2 ROS_PYTHON_VERSION=3

3 AMENT_PREFIX_PATH=/opt/ros/humble

4 PYTHONPATH=/opt/ros/humble/lib/python3.10/site-packages:/opt/ros/humble/local/lib/ c
python3.10/dist-packages↪→

5 LD_LIBRARY_PATH=/opt/ros/humble/opt/rviz_ogre_vendor/lib:/opt/ros/humble/lib/aarch64- c
linux-gnu:/opt/ros/humble/lib↪→

6 ROS_LOCALHOST_ONLY=0

7 PATH=/opt/ros/humble/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

8 ROS_DISTRO=humble

If the environment variables are NOT set correctly, it might be worthwhile to reinstall ROS.

Page 146 Robotics

7.1 Setting the Environment

The ROS Domain ID Variable Once we have determined a unique integer for our group of ROS

nodes, we can set the environment variable with the following command:

C.R. 4

bash1 export ROS_DOMAIN_ID=<your_domain_id>

To maintain this setting between shell sessions, we can also add the command to our shell startup

script .bashrc:

C.R. 5

bash1 echo "export ROS_DOMAIN_ID=<your_domain_id>" » ~/.bashrc

Changing the Localhost Variable By default, ROS communication is NOT limited to localhost.4

4Localhost is a form of
hostname, meaning the
specific computer that the
program is running on. It is
employed as a method of
connecting to services on
the network on the physical
host machine without the
services of an outer
network. When using
“localhost”, we are
connected to our computer
or the node that is
addressed by the IP address
127. Often used for testing
and development, it lets
developers run and test
Web applications, or any
other network service,
locally before putting them
on a live server. To
summarize, it can be
mentioned that localhost is
the loopback network
interface.

ROS_LOCALHOST_ONLY environment variable allows us to limit ROS communication to localhost

only.

This means our ROS system, and its topics, services, and actions will NOT be visible to other

computers on the local network.

Using ROS_LOCALHOST_ONLY is helpful in certain settings, such as classrooms, where multiple robots

may publish to the same topic causing strange behaviors. We can set the environment variable with

the following command:

C.R. 6

bash1 export ROS_LOCALHOST_ONLY=1

Of course, to maintain it across different shell session we can write this command to our .bashrc:

C.R. 7

bash1 echo "export ROS_LOCALHOST_ONLY=1" » ~/.bashrc

Robotics Page 147

Chapter7 Command Line Tools D. T. McGuiness, PhD

7.2 Turtles and Graphs

Turtlesim is a great introduction to ROS as it is a lightweight simulator and easy to work on. It

illustrates what ROS does at the most basic level to give us an idea of what we will do with a real

robot or a robot simulation later on.

The ros2 tool is how the user manages, introspects, and interacts with a ROS system. It supports

multiple commands which target different aspects of the system and its operation.

One might use it to start a node, set a parameter, listen to a topic, and many more.

The ros2 tool is part of the core ROS installation and should already be installed. This can

easily be tested by typing ros2 into a terminal.

The second tool is rqt, a GUI tool for ROS.

Everything done in rqt can be done using CLI, but rqt provides a more user-friendly way to

manipulate ROS elements.

We will work together to understand the fundamental concept which build the core of ROS, like

nodes, topics, and services. All of these concepts will be elaborated on later.

For now, we will simply set up the tools and get a feel for them.

Installing the Required Packages In case of NOT having a configured docker container which

was discussed in detail previously, please use the following commands to install all the necessary

packages.

C.R. 8

bash1 sudo apt update

2 sudo apt install ros-humble-turtlesim

text1 0 upgraded, 0 newly installed, 0 to remove and 6 not upgraded.

To check if the package is installed, run the following command in the terminal:

C.R. 9

bash1 ros2 pkg executables turtlesim

which should return a list of turtlesim’s executable options:

text1 turtlesim draw_square

2 turtlesim mimic

3 turtlesim turtle_teleop_key

4 turtlesim turtlesim_node

Page 148 Robotics

7.2 Turtles and Graphs

Installing and Starting Turtlesim Let’s begin the tutorial by starting turtlesim:

C.R. 10

bash1 ros2 run turtlesim turtlesim_node

Under the command, we will see messages from the node. There we can see the default turtle’s

name and the coordinates where it spawns.

text1 QStandardPaths: XDG_RUNTIME_DIR not set, defaulting to '/tmp/runtime-ubuntu'

2 [INFO] [1748967100.900464593] [turtlesim]: Starting turtlesim with node name /turtlesim

3 [INFO] [1748967100.908647551] [turtlesim]: Spawning turtle [turtle1] at x=[5.544445],

y=[5.544445], theta=[0.000000]↪→

The simulator window should appear, with a random turtle in the centre.5

5Here we can see the
turtlebot in its natural
habitat, the turtlesim
environment. The type of
the turtle changes every
time a new turtlesim
environment is called. All
these turtles represent a
version of ROS.

Making the Turtle Move Around Now, open a new terminal and if it is NOT automatic, source

ROS again. Now we will run a new node to control the turtle in the first node:

C.R. 11

bash1 ros2 run turtlesim turtle_teleop_key

text1 Reading from keyboard

2 ---------------------------

3 Use arrow keys to move the turtle.

4 Use G|B|V|C|D|E|R|T keys to rotate to absolute orientations. 'F' to cancel a rotation.

5 'Q' to quit.

At this point we should have three (3) windows open:

� a terminal running turtlesim_node,

� a terminal running turtle_teleop_key, and

� the turtlesim window itself.

Let’s arrange these windows so we can see the turtlesim window, but also have the terminal running

turtle_teleop_key active so that we can control the turtle in turtlesim using the arrow keys on

the keyboard. It will move around the screen, using its attached “pen” to draw the path it followed

so far.

Pressing an arrow key will only cause the turtle to move a short distance and then stop. This

is because, realistically, we wouldn’t want a robot to continue carrying on an instruction if,

for example, the operator lost the connection to the robot.

We can see the nodes, and their associated topics, services, and actions, using the list sub-commands

of the respective commands:

Robotics Page 149

Chapter7 Command Line Tools D. T. McGuiness, PhD

C.R. 12

bash1 echo "~~ Node information ~~" &&

2 ros2 node list &&

3 echo "~~ Topic information ~~" &&

4 ros2 topic list &&

5 echo "~~ Service information ~~" &&

6 ros2 service list &&

7 echo "~~ Action information ~~" &&

8 ros2 action list

text1 ~~ Node information ~~

2 /teleop_turtle

3 /turtlesim

4 ~~ Topic information ~~

5 /parameter_events

6 /rosout

7 /turtle1/cmd_vel

8 /turtle1/color_sensor

9 /turtle1/pose

10 ~~ Service information ~~

11 /clear

12 /kill

13 /reset

14 /spawn

15 /teleop_turtle/describe_parameters

16 /teleop_turtle/get_parameter_types

17 /teleop_turtle/get_parameters

18 /teleop_turtle/list_parameters

19 /teleop_turtle/set_parameters

20 /teleop_turtle/set_parameters_atomically

21 /turtle1/set_pen

22 /turtle1/teleport_absolute

23 /turtle1/teleport_relative

24 /turtlesim/describe_parameters

25 /turtlesim/get_parameter_types

26 /turtlesim/get_parameters

27 /turtlesim/list_parameters

28 /turtlesim/set_parameters

29 /turtlesim/set_parameters_atomically

30 ~~ Action information ~~

31 /turtle1/rotate_absolute

Don’t worry about what this all means as we will have a detailed look into each of them in a later

part.

Running rqt rqt is a GUI framework which implements various tools and interfaces in the form

of plugins. If it is not installed on our system please run the following commands:

C.R. 13

bash1 sudo apt update

2 sudo apt install '~nros-humble-rqt*'

Page 150 Robotics

7.2 Turtles and Graphs

Once installed, running it is pretty straightforward:

C.R. 14

bash1 rqt

When running rqt for the first time, the window will be blank. This is normal. To see what is

currently going on just select Plugins Services Service Caller from the menu bar at the top.6

6The view of rqt with only
turtlesim and teleop
running.

Use the refresh button to the left of the Service dropdown list to ensure all the services of our

turtlesim node are available. Once refreshed, click on the Service dropdown list to see services

belonging to turtlesim, and select the /spawn service.

Working the the spawn service Let’s use rqt to call the /spawn service. We can guess from

its name that /spawn will create another turtle in the turtlesim window.

Give the new turtle a unique name, like turtle2, by double-clicking between the empty single quotes

in the Expression column. We can see that this expression corresponds to the value of name and is

of type string.

Next enter some valid coordinates at which to spawn the new turtle, like x = 1.0 and y = 1.0.

If we try to spawn a new turtle with the same name as an existing turtle, like the default

turtle1, we will get an error message in the terminal running turtlesim_node.

To spawn turtle2, we then need to call the service by clicking the Call button on the upper right

side of the rqt window.

If the service call was successful, we should see a new turtle, again with a random design. spawn at

the coordinates we input for x and y.

Figure 7.1: Generating a new turtlebot to be spawned.

If we refresh the service list in rqt, we will also see

that now there are services related to the new turtle,

turtle2, in addition to turtle1.

Changing the Trail Parameters Now let’s give

turtle1 a unique pen using the /set_pen service:

The values for r, g, and b, which are between 0 and

255, set the colour of the pen turtle1 draws with, and

width sets the thickness of the line.

To have turtle1 draw with a distinct red line, change the value of r to 255, and the value of width

to 5.

Don’t forget to call the service after updating the values.

Robotics Page 151

Chapter7 Command Line Tools D. T. McGuiness, PhD

(a) The parameters of the /set_pen service. (b) The trail line of turtle1 has changed

If we were to return to the terminal where turtle_teleop_key is running and press the arrow keys,

we will see turtle1’s pen has changed and also noticed that there’s no way to move turtle2.

That’s because there is no teleop node for turtle2.

Remapping Controls We need a second teleop node in order to control turtle2. However, if we

try to run the same command as before, we will notice that this one also controls turtle1. The

way to change this behavior is by remapping the cmd_vel topic.

To do that, In a new terminal, source ROS, and run:

C.R. 15

bash1 ros2 run turtlesim turtlesim_node --ros-args --remap __node:=my_turtle

Now, we can move turtle2 when this terminal is active, and turtle1 when the other terminal

running turtle_teleop_key is active.

Page 152 Robotics

7.3 A Deeper Look into Nodes

7.3 A Deeper Look into Nodes

Each node in ROS should be responsible for a single,modular purpose.7 7e.g., controlling the
wheel motors or publishing
the sensor data from a
laser range-finder.

Each node can send and

receive data from other nodes using:

� topics,

� services,

� actions, or

� parameters.

A full robotic system is comprised of many interconnected nodes working in unison. In ROS, for

example, a single executable8 8C++ program, Python
program, etc.

can contain one or more nodes.

ros2 run Now let’s put all this knowledge into motion. The command ros2 run launches an

executable from a package.

C.R. 16

bash1 ros2 run <package_name> <executable_name>

To run turtlesim, open a new terminal (Ctrl + Alt + T), and enter the following command:

C.R. 17

bash1 ros2 run turtlesim turtlesim_node

Here, the package name is turtlesim and the executable name is turtlesim_node. We still don’t

know the node name, however.

ros2 node list We can find node names by using ros2 node list, which will show us the names

of all running nodes. This is especially useful when we want to interact with a node, or when we

have a system running many nodes and need to keep track of them.

Open a new terminal while turtlesim is still running in the other one, and enter the following command.

The terminal will return the node name:

C.R. 18

bash1 ros2 node list

text1 /turtlesim

Open another new terminal and start the teleop node with the command:

C.R. 19

bash1 ros2 run turtlesim turtle_teleop_key

Robotics Page 153

Chapter7 Command Line Tools D. T. McGuiness, PhD

Here, we are referring to the turtlesim package again, but this time we target the executable named

turtle_teleop_key.

Return to the terminal where we ran ros2 node list and run it again. We will now see the names of

two active nodes:

C.R. 20

bash1 ros2 node list

text1 /turtlesim

2 /teleop_turtle

Remapping a Node Remapping allows us to reassign default node properties:

like node name, topic names, service names, etc., to custom values.

Previously, we have used remapping on turtle_teleop_key to change the cmd_vel topic and

target turtle2.

Now, let’s reassign the name of our /turtlesim node. In a new terminal, run the following

command:

C.R. 21

bash1 ros2 run turtlesim turtlesim_node --ros-args --remap __node:=my_turtle

Since we’re calling ros2 run on turtlesim again, another turtlesim window will open. However, now

if we return to the terminal where we ran ros2 node list, and run it again, we will see three (3)

node names:

text1 /my_turtle

2 /turtlesim

3 /teleop_turtle

ros2 node info Now that we know the names of our nodes, we can access more information about

them with:

C.R. 22

bash1 ros2 node info <node_name>

To examine our latest node, my_turtle, run the following command:

C.R. 23

bash1 ros2 node info /my_turtle

Page 154 Robotics

7.3 A Deeper Look into Nodes

text1 /my_turtle

2 Subscribers:

3 /parameter_events: rcl_interfaces/msg/ParameterEvent

4 /turtle1/cmd_vel: geometry_msgs/msg/Twist

5 Publishers:

6 /parameter_events: rcl_interfaces/msg/ParameterEvent

7 /rosout: rcl_interfaces/msg/Log

8 /turtle1/color_sensor: turtlesim/msg/Color

9 /turtle1/pose: turtlesim/msg/Pose

10 Service Servers:

11 /clear: std_srvs/srv/Empty

12 /kill: turtlesim/srv/Kill

13 /my_turtle/describe_parameters: rcl_interfaces/srv/DescribeParameters

14 /my_turtle/get_parameter_types: rcl_interfaces/srv/GetParameterTypes

15 /my_turtle/get_parameters: rcl_interfaces/srv/GetParameters

16 /my_turtle/list_parameters: rcl_interfaces/srv/ListParameters

17 /my_turtle/set_parameters: rcl_interfaces/srv/SetParameters

18 /my_turtle/set_parameters_atomically: rcl_interfaces/srv/SetParametersAtomically

19 /reset: std_srvs/srv/Empty

20 /spawn: turtlesim/srv/Spawn

21 /turtle1/set_pen: turtlesim/srv/SetPen

22 /turtle1/teleport_absolute: turtlesim/srv/TeleportAbsolute

23 /turtle1/teleport_relative: turtlesim/srv/TeleportRelative

24 Service Clients:

25

26 Action Servers:

27 /turtle1/rotate_absolute: turtlesim/action/RotateAbsolute

28 Action Clients:

ros2 node info returns a list of subscribers, publishers, services, and actions.9 9i.e., the ROS graph
connections that interact
with that node.

Now try running the same command on the /teleop_turtle node, and see how its connections

differ from my_turtle.

Robotics Page 155

Chapter7 Command Line Tools D. T. McGuiness, PhD

7.4 Working with Topics

ROS breaks complex systems down into many modular nodes. Topics are a vital element of the

ROS graph that act as a bus for nodes to exchange messages.

A node may publish data to any number of topics and simultaneously have subscriptions to any

number of topics.

Topics are one of the main ways in which data is moved between nodes and therefore between

different parts of the system.

To begin we start with a fresh new terminal (Ctrl + Alt + T) and type the following command:

C.R. 24

bash1 ros2 run turtlesim turtlesim_node

And of course we would like to control this turtle so we need to add the teleop node as well.

C.R. 25

bash1 ros2 run turtlesim turtle_teleop_key

Graphing the Topics Throughout this tutorial, we will use rqt_graph to visualize the changing

nodes and topics, as well as the connections between them.

The turtlesim tutorial tells us how to install rqt and all its plugins, including rqt_graph.

To run rqt_graph, open a new terminal and enter the command:

C.R. 26

bash1 rqt_graph

Wou should see the above nodes and topic, as well as two (2) actions around the periphery of the

graph. If we hover your mouse over the topic in the centre, we’ll see the color highlighting.

The graph is depicting how the /turtlesim node and the /teleop_turtle node are commu-

nicating with each other over a topic. The /teleop_turtle node is publishing data1010the keystrokes you enter
to move the turtle around

to the

/turtle1/cmd_vel topic, and the /turtlesim node is subscribed to that topic to receive the

data.

The highlighting feature of rqt_graph is very helpful when examining more complex systems

with many nodes and topics connected in many different ways.

ros2 topic list Running the ros2 topic list command in a new terminal will return a list of all

the topics currently active in the system:

Page 156 Robotics

7.4 Working with Topics

C.R. 27

bash1 ros2 topic list

text1 /parameter_events

2 /rosout

3 /turtle1/cmd_vel

4 /turtle1/color_sensor

5 /turtle1/pose

Alternatively, running ros2 topic list -t will return the same list of topics, this time with the

topic type appended in brackets:

C.R. 28

bash1 ros2 topic list -t

text1 /parameter_events [rcl_interfaces/msg/ParameterEvent]

2 /rosout [rcl_interfaces/msg/Log]

3 /turtle1/cmd_vel [geometry_msgs/msg/Twist]

4 /turtle1/color_sensor [turtlesim/msg/Color]

5 /turtle1/pose [turtlesim/msg/Pose]

These attributes, particularly the type, are how nodes know they’re talking about the same information

as it moves over topics.

If you’re wondering where all these topics are in rqt_graph, you can uncheck all the boxes under

Hide:

Figure 7.3: A visual representation of the communication happening between the nodes /turtlesim and /teleop.

Robotics Page 157

Chapter7 Command Line Tools D. T. McGuiness, PhD

Figure 7.4

ros2 topic echo To see the data being published on a topic, use:

C.R. 29

bash1 ros2 topic echo <topic_name>

Since we know that /teleop_turtle publishes data to /turtlesim over the /turtle1/cmd_vel

topic, let’s use echo to introspect that topic:

C.R. 30

bash1 ros2 topic echo /turtle1/cmd_vel

At first, this command won’t return any data. That’s because it’s waiting for /teleop_turtle to

publish something.

Return to the terminal where turtle_teleop_key is running and use the arrows to move the turtle

around. Watch the terminal where your echo is running at the same time, and you’ll see position

data being published for every movement you make:

text1 linear:

2 x: 2.0

3 y: 0.0

4 z: 0.0

5 angular:

6 x: 0.0

7 y: 0.0

8 z: 0.0

9 ---

Now return to rqt_graph and uncheck the Debug box.

/_ros2cli_5707 is the node created by the echo command we just ran (the number might be

different). Now you can see that the publisher is publishing data over the cmd_vel topic, and two

(2) subscribers are subscribed to it.

Page 158 Robotics

7.4 Working with Topics

Figure 7.5

ros2 topic info Topics don’t have to only be one-to-one communication; they can be one-to-many,

many-to-one, or many-to-many.

Another way to look at this is running:

C.R. 31

bash1 ros2 topic info /turtle1/cmd_vel

text1 Type: geometry_msgs/msg/Twist

2 Publisher count: 1

3 Subscription count: 2

ros2 interface show Nodes send data over topics using messages. Publishers and subscribers

must send and receive the same type of message to communicate.

The topic types we saw earlier after running ros2 topic list -t let us know what message type

is used on each topic. Recall that the cmd_vel topic has the type:

C.R. 32

bash1 geometry_msgs/msg/Twist

This means that in the package geometry_msgs there is a msg called Twist.

Now we can run ros2 interface show <msg_type> on this type to learn its details. Specifically, what

structure of data the message expects.

C.R. 33

bash1 ros2 interface show geometry_msgs/msg/Twist

Which will return

Robotics Page 159

Chapter7 Command Line Tools D. T. McGuiness, PhD

text1 # This expresses velocity in free space broken into its linear and angular parts.

2 Vector3 linear

3 float64 x

4 float64 y

5 float64 z

6 Vector3 angular

7 float64 x

8 float64 y

9 float64 z

This tells you that the /turtlesim node is expecting a message with two vectors, linear and angular,

of three elements each. If you recall the data we saw /teleop_turtle passing to /turtlesim with

the echo command, it’s in the same structure:

text1 linear:

2 x: 2.0

3 y: 0.0

4 z: 0.0

5 angular:

6 x: 0.0

7 y: 0.0

8 z: 0.0

9 ---

Page 160 Robotics

7.5 Working with Services

7.5 Working with Services

As a brief review, services are yet another method of communication for nodes in the ROS graph.

Services are based on a call-and-response model versus the publisher-subscriber model of topics.

While topics allow nodes to subscribe to data streams and get continual updates, services only

provide data when they are specifically called by a client.

To begin we start with a fresh new terminal (Ctrl + Alt + T) and type the following command

to start the /turtlesim and /teleop_turtle nodes:

C.R. 34

bash1 ros2 run turtlesim turtlesim_node

C.R. 35

bash1 ros2 run turtlesim turtle_teleop_key

ros2 service list Running the ros2 service list command in a new terminal will return a list

of all the services currently active in the system:

C.R. 36

bash1 ros2 service list

text1 /clear

2 /kill

3 /reset

4 /spawn

5 /teleop_turtle/describe_parameters

6 /teleop_turtle/get_parameter_types

7 /teleop_turtle/get_parameters

8 /teleop_turtle/list_parameters

9 /teleop_turtle/set_parameters

10 /teleop_turtle/set_parameters_atomically

11 /turtle1/set_pen

12 /turtle1/teleport_absolute

13 /turtle1/teleport_relative

14 /turtlesim/describe_parameters

15 /turtlesim/get_parameter_types

16 /turtlesim/get_parameters

17 /turtlesim/list_parameters

18 /turtlesim/set_parameters

19 /turtlesim/set_parameters_atomically

Looking at this output we will see both nodes have the same six (6) services with parameters in their

names. Nearly every node in ROS has these infrastructure services that parameters are built off of.

For now, let’s focus on the turtlesim-specific services:

� /clear,

Robotics Page 161

Chapter7 Command Line Tools D. T. McGuiness, PhD

� /kill

� /reset

� /spawn,

� /turtle1/set_pen,

� /turtle1/teleport_absolute, and

� /turtle1/teleport_relative.

We have interacted some of these services using rqt previously.

ros2 service type Services have types which describe how the request and response data of a

service is structured. Service types are defined similarly to topic types, except service types have two

(2) parts:

� one message for request,

� another one for response.

To find out the type of a service, use the command:

C.R. 37

bash1 ros2 service type <service_name>

Let’s take a look at turtlesim’s /clear service. In a brand new terminal, let’s enter the command:

C.R. 38

bash1 ros2 service type /clear

text1 std_srvs/srv/Empty

In this context, the Empty type means the service call sends no data when making a request and

receives no data when receiving a response.

ros2 service list -t To see the types of all the active services at the same time, we can append

the --show-types option, abbreviated as -t, to the list command:

C.R. 39

bash1 ros2 service list -t

text1 /clear [std_srvs/srv/Empty]

2 /kill [turtlesim/srv/Kill]

3 /reset [std_srvs/srv/Empty]

Page 162 Robotics

7.5 Working with Services

text4 /spawn [turtlesim/srv/Spawn]

5 ...

6 /turtle1/set_pen [turtlesim/srv/SetPen]

7 /turtle1/teleport_absolute [turtlesim/srv/TeleportAbsolute]

8 /turtle1/teleport_relative [turtlesim/srv/TeleportRelative]

9 ...

ros2 service find If we want to find all the services of a specific type, we can use the command,

which the syntax is as follows:

C.R. 40

bash1 ros2 service find <type_name>

For example, we can find all the Empty typed services like this:

C.R. 41

bash1 ros2 service find std_srvs/srv/Empty

text1 /clear

2 /reset

ros2 interface show We can call services from the command line, but first we need to know the

structure of the input arguments. The syntax of the interface command is as follows:

C.R. 42

bash1 ros2 interface show <type_name>

Try this on the /clear service’s type, Empty:

C.R. 43

bash1 ros2 interface show std_srvs/srv/Empty

text1 ---

The --- separates the request structure (above) from the response structure (below). But, as we

learned earlier, the Empty type doesn’t send or receive any data. So, naturally, its structure is blank.

Let’s introspect a service with a type that sends and receives data, like /spawn. From the results of

ros2 service list -t, we know /spawn’s type is turtlesim/srv/Spawn.

To see the request and response arguments of the /spawn service, run the command:

C.R. 44

bash1 ros2 interface show turtlesim/srv/Spawn

Robotics Page 163

Chapter7 Command Line Tools D. T. McGuiness, PhD

text1 float32 x

2 float32 y

3 float32 theta

4 string name # Optional. A unique name will be created and returned if this is empty

5 ---

6 string name

The information above the --- line tells us the arguments needed to call /spawn. x, y and theta

determine the 2D pose of the spawned turtle, and name is clearly optional.

The information below the line isn’t something we need to know in this case, but it can help us

understand the data type of the response we get from the call.

ros2 service call Now that we know what a service type is, how to find a service’s type, and how

to find the structure of that type’s arguments, we can call a service using:

C.R. 45

bash1 ros2 service call <service_name> <service_type> <arguments>

The <arguments> part is optional. For example, we know that Empty typed services don’t have any

arguments:

C.R. 46

bash1 ros2 service call /clear std_srvs/srv/Empty

This command will clear the turtlesim window of any lines our turtle has drawn. Now let’s spawn a

new turtle by calling /spawn and setting arguments. Input <arguments> in a service call from the

command-line need to be in YAML syntax.

Enter the command:

C.R. 47

bash1 ros2 service call /spawn turtlesim/srv/Spawn "{x: 2, y: 2, theta: 0.2, name: ''}"

text1 requester: making request: turtlesim.srv.Spawn_Request(x=2.0, y=2.0, theta=0.2, name='')

2

3 response:

4 turtlesim.srv.Spawn_Response(name='turtle2')

We will get this method-style view of what’s happening, and then the service response.

Our turtlesim window will update with the newly spawned turtle right away:

Page 164 Robotics

7.6 Working with Parameters

7.6 Working with Parameters

To give a brief refreshment, a parameter is a configuration value of a node. Think of parameters as

node settings or its configuration file. A node can store parameters as integers, floats, booleans,

strings, and lists.

In ROS, each node maintains its own parameters.

To begin we start with a fresh new terminal (Ctrl + Alt + T) and type the following command:

C.R. 48

bash1 ros2 run turtlesim turtlesim_node

And of course we would like to control this turtle so we need to add the teleop node as well.

C.R. 49

bash1 ros2 run turtlesim turtle_teleop_key

ros2 param list Now that both of them are running at the same time, lets look at all the parameters

in this system

C.R. 50

bash1 ros2 run turtlesim turtle_teleop_key

text1 /teleop_turtle:

2 qos_overrides./parameter_events.publisher.depth

3 qos_overrides./parameter_events.publisher.durability

4 qos_overrides./parameter_events.publisher.history

5 qos_overrides./parameter_events.publisher.reliability

6 scale_angular

7 scale_linear

8 use_sim_time

9 /turtlesim:

10 background_b

11 background_g

12 background_r

13 qos_overrides./parameter_events.publisher.depth

14 qos_overrides./parameter_events.publisher.durability

15 qos_overrides./parameter_events.publisher.history

16 qos_overrides./parameter_events.publisher.reliability

17 use_sim_time

Every node has the parameter use_sim_time. It is NOT unique to turtlesim.

Based on their names, it looks like /turtlesim parameters determine the background color of the

turtlesim window using RGB color values.

Robotics Page 165

Chapter7 Command Line Tools D. T. McGuiness, PhD

ros2 param get To determine a type of the parameter we are trying to understand let’s use

ros2 param get. The following is the syntax of the command

C.R. 51

bash1 ros2 param get <node_name> <parameter_name>

Now, let’s use this command to determine they type and the value of the parameter:

text1 Integer value is: 86

It seems the background_g parameter holds an integer value. If we were to run the same command

on background_r and background_b, we will get the values 69 and 255, respectively.

ros2 param set Time to change these parameters and play around. To change a parameter’s

value at runtime, use the command:

C.R. 52

bash1 ros2 param set <node_name> <parameter_name> <value>

Let’s do something simple and try to change the /turtlesim node’s background:

C.R. 53

bash1 ros2 param set /turtlesim background_r 150

text1 Set parameter successful

The background of our turtlesim window should change colours.11

11While the original value
was 86 by using

ros param set we were
able to change the value of
the parameter and change
the background to a nice

purple.

It is worth mentioning that, setting

parameters with the set command will only change them in our current session, NOT permanently.

However, we can save our settings and reload them the next time we want to start a node.

ros2 param dump For this we need to dump this parameters to some other file for later use. Let’s

have a look at the ros2 param dump command. This allows us to view all of a node’s current

parameter values:

C.R. 54

bash1 ros2 param dump <node_name>

The command prints to the standard output (stdout) by default but we can also redirect the

parameter values into a file to save them for later.

To save our current configuration of /turtlesim parameters into the file turtlesim.yaml, enter

the command:

C.R. 55

bash1 ros2 param dump /turtlesim > turtlesim.yaml

Page 166 Robotics

7.6 Working with Parameters

In the current working directory we will find a new file. If we were to open this file, we’ll see the

following content:

C.R. 56

yaml1 /turtlesim:

2 ros__parameters:

3 background_b: 255

4 background_g: 86

5 background_r: 150

6 qos_overrides:

7 /parameter_events:

8 publisher:

9 depth: 1000

10 durability: volatile

11 history: keep_last

12 reliability: reliable

13 use_sim_time: false

Dumping parameters comes in handy if we want to reload the node with the same parameters in the

future.

ros2 param load Once the parameters are dumped into a file, we can load them to a currently

running node using the command:

C.R. 57

bash1 ros2 param load <node_name> <parameter_file>

To load the turtlesim.yaml file we just generated with ros2 param dump into /turtlesim

node parameters, we just have to enter the command:

C.R. 58

bash1 ros2 param load /turtlesim turtlesim.yaml

text1 Set parameter background_b successful

2 Set parameter background_g successful

3 Set parameter background_r successful

4 Set parameter qos_overrides./parameter_events.publisher.depth failed: parameter

'qos_overrides./parameter_events.publisher.depth' cannot be set because it is read-only↪→

5 Set parameter qos_overrides./parameter_events.publisher.durability failed: parameter

'qos_overrides./parameter_events.publisher.durability' cannot be set because it is

read-only

↪→

↪→

6 Set parameter qos_overrides./parameter_events.publisher.history failed: parameter

'qos_overrides./parameter_events.publisher.history' cannot be set because it is

read-only

↪→

↪→

7 Set parameter qos_overrides./parameter_events.publisher.reliability failed: parameter

'qos_overrides./parameter_events.publisher.reliability' cannot be set because it is

read-only

↪→

↪→

8 Set parameter use_sim_time successful

Robotics Page 167

Chapter7 Command Line Tools D. T. McGuiness, PhD

Read-only parameters can only be modified at startup and not afterwards, that is why there

are some warnings for the qos_overrides parameters.

Loading Parameters on Startup To start the same node using our saved parameter values, use:

C.R. 59

bash1 ros2 run <package_name> <executable_name> --ros-args --params-file <file_name>

This is the same command we always use to start turtlesim, with the added flags --ros-args and

--params-file, followed by the file we want to load.

To test this out, stop our running turtlesim node, and try reloading it with our saved parameters,

using:

C.R. 60

bash1 ros2 run turtlesim turtlesim_node --ros-args --params-file turtlesim.yaml

The turtlesim window should appear as usual, but with the purple background we set earlier.

When a parameter file is used at node startup, all parameters, including the read-only ones,

will be updated.

Page 168 Robotics

7.7 A Practical Look into Actions

7.7 A Practical Look into Actions

Actions are one of the communication types in ROS and are intended for long running tasks. They

consist of three parts: a goal, feedback, and a result.

Actions are built on topics and services. Their functionality is similar to services, except actions

can be canceled. They also provide steady feedback, as opposed to services which return a single

response.

Actions use a client-server model, similar to the publisher-subscriber model (described in the topics

tutorial). An “action client” node sends a goal to an “action server” node that acknowledges the

goal and returns a stream of feedback and a result.

To begin we start with a fresh new terminal (Ctrl + Alt + T) and type the following command:

C.R. 61

bash1 ros2 run turtlesim turtlesim_node

And of course we would like to control this turtle so we need to add the teleop node as well.

C.R. 62

bash1 ros2 run turtlesim turtle_teleop_key

When we launch the /teleop_turtle node, we will see the following message in our terminal:

text1 Use arrow keys to move the turtle.

2 Use G|B|V|C|D|E|R|T keys to rotate to absolute orientations. 'F' to cancel a rotation.

Let’s focus on the second line, which corresponds to an action. Pay attention to the terminal

where the /turtlesim node is running. Each time we press one of these keys, we are sending a

goal to an action server that is part of the /turtlesim node. The goal is to rotate the turtle to

face a particular direction. A message relaying the result of the goal should display once the turtle

completes its rotation:

text1 [INFO] [turtlesim]: Rotation goal completed successfully

The F key will cancel a goal mid-execution.

Try pressing the C key, and then pressing the F key before the turtle can complete its rotation. In

the terminal where the /turtlesim node is running, we will see the message:

text1 [INFO] [turtlesim]: Rotation goal canceled

Not only can the client-side (our input in the teleop) stop a goal, but the server-side (the /turtlesim

node) can as well. When the server-side chooses to stop processing a goal, it is said to “abort” the

goal.

Robotics Page 169

Chapter7 Command Line Tools D. T. McGuiness, PhD

Try hitting the D key, then the G key before the first rotation can complete. In the terminal where

the /turtlesim node is running, we will see the message:

text1 [WARN] [turtlesim]: Rotation goal received before a previous goal finished.

2 Aborting previous goal

This action server chose to abort the first goal because it got a new one. It could have chosen

something else, like reject the new goal or execute the second goal after the first one finished. Don’t

assume every action server will choose to abort the current goal when it gets a new one.

ros2 node info To see the list of actions a node provides, /turtlesim in this case, open a new

terminal and run the command:

C.R. 63

bash1 ros2 node info /turtlesim

text1 /turtlesim

2 Subscribers:

3 /parameter_events: rcl_interfaces/msg/ParameterEvent

4 /turtle1/cmd_vel: geometry_msgs/msg/Twist

5 Publishers:

6 /parameter_events: rcl_interfaces/msg/ParameterEvent

7 /rosout: rcl_interfaces/msg/Log

8 /turtle1/color_sensor: turtlesim/msg/Color

9 /turtle1/pose: turtlesim/msg/Pose

10 Service Servers:

11 /clear: std_srvs/srv/Empty

12 /kill: turtlesim/srv/Kill

13 /reset: std_srvs/srv/Empty

14 /spawn: turtlesim/srv/Spawn

15 /turtle1/set_pen: turtlesim/srv/SetPen

16 /turtle1/teleport_absolute: turtlesim/srv/TeleportAbsolute

17 /turtle1/teleport_relative: turtlesim/srv/TeleportRelative

18 /turtlesim/describe_parameters: rcl_interfaces/srv/DescribeParameters

19 /turtlesim/get_parameter_types: rcl_interfaces/srv/GetParameterTypes

20 /turtlesim/get_parameters: rcl_interfaces/srv/GetParameters

21 /turtlesim/list_parameters: rcl_interfaces/srv/ListParameters

22 /turtlesim/set_parameters: rcl_interfaces/srv/SetParameters

23 /turtlesim/set_parameters_atomically: rcl_interfaces/srv/SetParametersAtomically

24 Service Clients:

25

26 Action Servers:

27 /turtle1/rotate_absolute: turtlesim/action/RotateAbsolute

28 Action Clients:

The command returns a list of /turtlesim’s subscribers, publishers, services, action servers and action

clients.

Notice that the /turtle1/rotate_absolute action for /turtlesim is under Action Servers. This

Page 170 Robotics

7.7 A Practical Look into Actions

means /turtlesim responds to and provides feedback for the /turtle1/rotate_absolute action.

The /teleop_turtle node has the name /turtle1/rotate_absolute under Action Clients

meaning that it sends goals for that action name. To see that, run:

C.R. 64

bash1 ros2 node info /teleop_turtle

text1 /teleop_turtle

2 Subscribers:

3 /parameter_events: rcl_interfaces/msg/ParameterEvent

4 Publishers:

5 /parameter_events: rcl_interfaces/msg/ParameterEvent

6 /rosout: rcl_interfaces/msg/Log

7 /turtle1/cmd_vel: geometry_msgs/msg/Twist

8 Service Servers:

9 /teleop_turtle/describe_parameters: rcl_interfaces/srv/DescribeParameters

10 /teleop_turtle/get_parameter_types: rcl_interfaces/srv/GetParameterTypes

11 /teleop_turtle/get_parameters: rcl_interfaces/srv/GetParameters

12 /teleop_turtle/list_parameters: rcl_interfaces/srv/ListParameters

13 /teleop_turtle/set_parameters: rcl_interfaces/srv/SetParameters

14 /teleop_turtle/set_parameters_atomically: rcl_interfaces/srv/SetParametersAtomically

15 Service Clients:

16

17 Action Servers:

18

19 Action Clients:

20 /turtle1/rotate_absolute: turtlesim/action/RotateAbsolute

ros2 action list To identify all the actions in the ROS graph, run the command:

C.R. 65

bash1 ros2 action list

text1 /turtle1/rotate_absolute

This is the only action in the ROS graph right now. It controls the turtle’s rotation, as we saw earlier.

We also already know that there is one action client (part of /teleop_turtle) and one action

server (part of /turtlesim) for this action from using the ros2 node info <node_name> command.

ros2 action list -t Actions have types, similar to topics and services. To find /turtle1/rotate_absolute’s

type, run the command:

C.R. 66

bash1 ros2 action list -t

text1 /turtle1/rotate_absolute [turtlesim/action/RotateAbsolute]

Robotics Page 171

Chapter7 Command Line Tools D. T. McGuiness, PhD

In brackets to the right of each action name (in this case only /turtle1/rotate_absolute) is

the action type, turtlesim/action/RotateAbsolute. We will need this when we want to execute an

action from the command line or from code.

Page 172 Robotics

7.8 Launching Nodes

7.8 Launching Nodes

Up to now, we have been opening new terminals for every new node we ran. As we create more

complex systems with more and more nodes running simultaneously, opening terminals and reentering

configuration details becomes tedious.

Launch files allow we to start up and configure a number of executables containing ROS nodes

simultaneously.

Running a single launch file with the ros2 launch command will start up our entire system12 12which includes all nodes
and their configurations

at once.

C.R. 67

bash1 ros2 launch turtlesim multisim.launch.py

This command will run the following launch file:

C.R. 68

python1 from launch import LaunchDescription

2 import launch_ros.actions

3

4

5 def generate_launch_description():

6 return LaunchDescription([

7 launch_ros.actions.Node(

8 namespace='turtlesim1', package='turtlesim',

9 executable='turtlesim_node', output='screen'),

10 launch_ros.actions.Node(

11 namespace='turtlesim2', package='turtlesim',

12 executable='turtlesim_node', output='screen'),

13])

The launch file above is written in Python, but we can also use XML and YAML to create

launch files. We can see a comparison of these different ROS launch formats in Using XML,

YAML, and Python for ROS Launch Files.

If this is working well, then we should see two turtlesim environments popping up. This will run two

(2) turtlesim nodes.

Controlling the Nodes Now that these nodes are running, we can control them like any other

ROS nodes. For example, we can make the turtles drive in opposite directions by opening up two

additional terminals and running the following commands:

In a second terminal:

C.R. 69

bash1 ros2 topic pub /turtlesim1/turtle1/cmd_vel geometry_msgs/msg/Twist "{linear: {x: 2.0, y:

0.0, z: 0.0}, angular: {x: 0.0, y: 0.0, z: 1.8}}"↪→

In a third terminal:

Robotics Page 173

Chapter7 Command Line Tools D. T. McGuiness, PhD

C.R. 70

bash1 ros2 topic pub /turtlesim2/turtle1/cmd_vel geometry_msgs/msg/Twist "{linear: {x: 2.0, y:

0.0, z: 0.0}, angular: {x: 0.0, y: 0.0, z: -1.8}}"↪→

After running these commands, we should see the two turtles in their respective envrionment spinning

like a record.

Page 174 Robotics

Chapter8
Client Libraries

Table of Contents

8.1 Getting Started with Colcon . 175
8.2 Creating a Workspace . 179
8.3 Creating a Package . 183
8.4 Writing a Simple Publisher & Subscriber . 184
8.5 Writing a Simple Service and Client . 191
8.6 Creating Custom msg and srv Files . 197
8.7 Using Parameters in a Class . 205
8.8 Managing Dependencies . 211
8.9 Creating an Action . 213
8.10 Writing an Action Server and Client . 215
8.11 Writing a Launch File . 216

8.1 Getting Started with Colcon

Now we have learned previously all the essential concepts required for us to get a good introduction

to ROS and now we can begin to go deeper into understanding how packages are written and how

all previously defined concepts and ideas can be implemented in code. In this light, let us start with

looking at the compiler for ROS: colcon

a meta build tool to improve the workflow of building, testing and using multiple software

packages [Debianpackageros2025].

The first thing to define is colcon is an iteration on the ROS build tools:

catkin_make, catkin_make_isolated, catkin_tools and ament_tools.

Chapter8 Client Libraries D. T. McGuiness, PhD

We begin by installing colcon:11Of course, if we have
installed ROS with a

Dockerfile and followed the
lecture material, we don’t

have to do this step.
However, this step is

nevertheless here in case
the document is followed

non-linearly.

C.R. 1

bash1 sudo apt install python3-colcon-common-extensions

text1 Reading package lists... 0%

2 Reading package lists... 0%

3 Reading package lists... 7%

4 Reading package lists... Done

5 Building dependency tree... 0%

6 Building dependency tree... 0%

7 Building dependency tree... 50%

8 Building dependency tree... 50%

9 Building dependency tree... Done

10 Reading state information... 0%

11 Reading state information... 0%

12 Reading state information... Done

13 python3-colcon-common-extensions is already the newest version (0.3.0-100).

14 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

The Structure of a Package A ROS workspace is a directory with a particular structure. Com-

monly there is a src subdirectory.22This kind of directory
usually exists for
development of

applications such as C or
C++.

Within this subdirectory is where the source code (src) of

ROS packages will be located.

When this directory is created, it will be empty.

The primary job of colcon is to create the structure for, compile and build these source files. By

default it will create the following directories as same hierarchy of the src directory:

build Where intermediate files are stored. For each package a subfolder will be created in which

e.g., CMake33a free, cross-platform,
software development tool
for building applications via

compiler-independent
instructions and allows

automate testing,
packaging and installation.

It runs on a variety of
platforms and supports

many programming
languages.

is being invoked.

install Where each package will be installed to. By default each package will be installed into a

separate subdirectory.

log Contains various logging information about each colcon invocation, for use in error-checking

and debugging purposes.

For any student who worked with ROS 1 and catkin, there is no devel directory.

To get started we first create a directory (ros2_ws) to contain our workspace:44The name of the
directory is up to the user.

C.R. 2

bash1 mkdir -p ~/ros2_ws/src

2 cd ~/ros2_ws

At this moment if we were to ls into our directory we will only see one (1) folder which is src,

which is to be expected as it is created just a second ago.

Page 176 Robotics

8.1 Getting Started with Colcon

C.R. 3

bash1 ls

text1 src

Now let’s populate our newly created environment with some tutorial files from the official ROS

repo:

C.R. 4

bash1 git clone https://github.com/ros2/examples src/examples -b humble

text1 Cloning into 'src/examples'...

2 remote: Enumerating objects: 9987, done.

3 remote: Counting objects: 100% (2546/2546), done.

4 remote: Compressing objects: 100% (358/358), done.

5 remote: Total 9987 (delta 2376), reused 2195 (delta 2188), pack-reused 7441 (from 3)

6 Receiving objects: 100% (9987/9987), 1.56 MiB | 4.28 MiB/s, done.

7 Resolving deltas: 100% (7250/7250), done.

Sourcing an Underlay It is important that we’ve sourced the environment for an existing ROS

installation which will provide our workspace with the necessary build dependencies for the example

packages. This is achieved by sourcing the setup script provided by a binary installation or a source

installation.5 5i.e. another, colcon
workspace.

We call this environment an underlay.

Our workspace, ros2_ws, will be an overlay on top of the existing ROS installation.

In general, it is recommended to use an overlay when we plan to iterate on a small number

of packages, rather than putting all of our packages into the same workspace.

Building the Workspace In the root of the workspace, run colcon build. Since build types

such as ament_cmake do NOT support the concept of the devel space and require the package

to be installed, colcon supports the option --symlink-install. This allows the installed files to

be changed by changing the files in the source space6 6e.g., Python files or other
non-compiled resources

for faster iteration.

C.R. 5

bash1 colcon build --symlink-install --executor sequential

The way we are currently building is NOT the official way as we had to add

--executor sequential option. We are adding this as by default, the colcon process-

es/compiles packages parallel to speed up the compilation time. If we were to have ROS

installed on native hardware rather than a docker container we may not have needed this

additional option.

Robotics Page 177

Chapter8 Client Libraries D. T. McGuiness, PhD

After the build is finished, we should see the build, install, and log directories:

C.R. 6

bash1 ls -l

text1 drwxr-xr-x 24 ubuntu ubuntu 4096 Jun 6 13:58 build

2 drwxr-xr-x 24 ubuntu ubuntu 4096 Jun 6 13:58 install

3 drwxr-xr-x 4 ubuntu ubuntu 4096 Jun 6 13:57 log

4 drwxr-xr-x 3 ubuntu ubuntu 4096 Jun 6 13:54 src

To run test on built packages we can run colcon test

Sourcing the New Package When colcon has completed building successfully, the output will

be in the install directory. Before we can use any of the installed executables or libraries, we will

have to add them to our path and library paths. colcon will have generated bash files in the install

directory to help set up the environment. These files will add all of the required elements to our

path and library paths as well as provide any bash or shell commands exported by packages.

C.R. 7

bash1 source install/setup.bash

It is time to test out what we have built. Let’s open up a new terminal window side by side and run

the following two (2) commands:

C.R. 8

bash1 ros2 run examples_rclcpp_minimal_subscriber subscriber_member_function

C.R. 9

bash1 ros2 run examples_rclcpp_minimal_publisher publisher_member_function

If everything has worked well, we should see messages from the publisher and subscriber with numbers

incrementing.

Information Overlay v. Underlay

As a final clarification on these two (2) concepts, let’s look at them in a bit more detail:

� An underlay is the core ROS installation that provides the foundational packages and environment for

your ROS development. In our case it is Humble.

� An overlay is the secondary workspace where we can add new packages without interfering with the

existing ROS 2 workspace that we’re extending.

Page 178 Robotics

8.2 Creating a Workspace

8.2 Creating a Workspace

A workspace is a directory containing ROS packages. Before using ROS, it’s necessary to source

our ROS installation workspace in the terminal we plan to work in. This makes ROS’s packages

available for you to use in that terminal.

We also have the option of sourcing an “overlay”, which is a secondary workspace where we can

add new packages without interfering with the existing ROS workspace that we’re extending, or

“underlay”.

Our underlay must contain the dependencies of all the packages in our overlay.

Packages in our overlay will override packages in the underlay.

It’s also possible to have several layers of underlays and overlays, with each successive overlay

using the packages of its parent underlays.

Sourcing the Environment Our main ROS installation will be our underlay for this section.7 7Keep in mind that an
underlay does NOT
necessarily have to be the
main ROS installation.Depending on how we installed ROS, either from source or binaries, and which platform we’re on,

our exact source command will vary:

C.R. 10

bash1 source /opt/ros/humble/setup.bash

Creating a New Directory Best practice is to create a new directory for every new workspace.

The name doesn’t matter, but it is helpful to have it indicate the purpose of the workspace. Let’s

choose the directory name ros2_ws, for “development workspace”:

C.R. 11

bash1 mkdir -p ~/ros2_ws/src

2 cd ~/ros2_ws/src

Another best practice is to put any packages in our workspace into the src directory. The above

code creates a src directory inside ros2_ws and then navigates into it.

Cloning a Sample Repo Ensure we’re still in the ros2_ws/src directory before we clone.

In the following sections, we will create our own packages, but for now we will practice putting a

workspace together using existing packages. A repo can have multiple branches. We need to check

out the one that targets our installed ROS distro. When we clone this repo, add the -b argument

followed by that branch.

In the ros2_ws src directory, run the following command:

Robotics Page 179

Chapter8 Client Libraries D. T. McGuiness, PhD

C.R. 12

bash1 git clone https://github.com/ros/ros_tutorials.git -b humble

Now ros_tutorials is cloned in our workspace. The ros_tutorials repository contains the

turtlesim package, which we’ll use in this section. The other packages in this repository are not built

because they contain a COLCON_IGNORE file.

So far we have populated our workspace with a sample package, but it isn’t a fully-functional

workspace yet as we need to resolve the dependencies first and then build the workspace.

Resolving Dependencies Before building the workspace, we need to resolve the package depen-

dencies. It is possible we may have all the dependencies already, but best practice is to check for

dependencies every time we clone. We wouldn’t want a build to fail after a long wait only to realize

that we have missing dependencies.

From the root of our workspace (ros2_ws), run the following command:

If we’re still in the src directory with the ros_tutorials clone, make sure to run cd ..

to move back up to the workspace (ros2_ws).

C.R. 13

bash1 cd ..

2 rosdep install -i --from-path src --rosdistro humble -y

If we already have all our dependencies, the console will return:

text1 #All required rosdeps installed successfully

Packages declare their dependencies in the package.xml file.88We will learn more about
packages in the following

section.

This command walks through those

declarations and installs the ones that are missing.

Building the Workspace From the root of our workspace (ros2_ws), we can now build our

packages using the command:

C.R. 14

bash1 colcon build

text1 Starting »> turtlesim

2 Finished «< turtlesim [5.49s]

3

4 Summary: 1 package finished [5.58s]

There are some useful arguments for colcon build which are as follows:

Page 180 Robotics

8.2 Creating a Workspace

--packages-up-to

builds the package we want, plus all its dependencies, but not the whole workspace (saves

time)

--symlink-install

saves us from having to rebuild every time we tweak python scripts

--event-handlers console_direct+

shows console output while building (can otherwise be found in the log directory)

--executor sequential

processes the packages one by one instead of using parallelism

Once the build is finished, enter the command in the workspace root (~/ros2_ws). We will see

that colcon has created new directories:

C.R. 15

bash1 ls

text1 build install log src

The install directory is where our workspace’s setup files are, which we can use to source our overlay.

Sourcing our Overlay Before sourcing the overlay, it is very important that we open a new terminal,

separate from the one where we built the workspace. Sourcing an overlay in the same terminal

where we built, or likewise building where an overlay is sourced, may create complex issues.

In the new terminal, source our main ROS 2 environment as the “underlay”, so we can build the

overlay “on top of” it:

C.R. 16

bash1 source /opt/ros/humble/setup.bash

Time to go into the root of our workspace:

C.R. 17

bash1 cd ~/ros2_ws

In the root, source our overlay:

C.R. 18

bash1 source install/local_setup.bash

Sourcing the local_setup of the overlay will only add the packages available in the overlay

to our environment. setup sources the overlay as well as the underlay it was created in,

allowing us to utilise both workspaces. So, sourcing our main ROS installation’s setup and

then the ros2_ws overlay’s local_setup, like we just did, is the same as just sourcing

Robotics Page 181

Chapter8 Client Libraries D. T. McGuiness, PhD

ros2_ws’s setup, because that includes the environment of its underlay.

Now we can run the turtlesim package from the overlay:

C.R. 19

bash1 ros2 run turtlesim turtlesim_node

But how can you tell that this is the overlay turtlesim running, and not your main

installation’s turtlesim?

Let’s modify turtlesim in the overlay so you can see the effects:

� We can modify and rebuild packages in the overlay separately from the underlay.

� The overlay takes precedence over the underlay.

Modifying the Overlay You can modify turtlesim in your overlay by editing the title bar on

the turtlesim window. To do this, locate the turtle_frame.cpp file in ros2_ws src

ros_tutorials turtlesim src. Open turtle_frame.cpp with your preferred text editor.

Find the function setWindowTitle("TurtleSim");, change the value "TurtleSim" to "MyTurtleSim",

and save the file.

Return to the first terminal where you ran colcon build earlier and run it again.

C.R. 20

bash1 ros2 run turtlesim turtlesim_node

Return to the second terminal (where the overlay is sourced) and run turtlesim again:

Even though your main ROS 2 environment was sourced in this terminal earlier, the overlay of your

ros2_ws environment takes precedence over the contents of the underlay.

To see that your underlay is still intact, open a brand new terminal and source only your ROS 2

installation. Run turtlesim again:

C.R. 21

bash1 ros2 run turtlesim turtlesim_node

You can see that modifications in the overlay did not actually affect anything in the underlay.

Page 182 Robotics

8.3 Creating a Package

8.3 Creating a Package

A package is an organizational unit for our ROS code. If we want to be able to install our code or

share it with others, then we’ll need it organized in a package. With packages, we can release our

ROS work and allow others to build and use it easily.

Package creation in ROS uses ament as its build system and colcon as its build tool. We can create

a package using either CMake or Python, which are officially supported, though other build types do

exist.

The Anatomy of a Package ROS Python and CMake packages each have their own minimum

required contents:

package.xml file containing meta information about the package

resource/<package_name> marker file for the package

setup.cfg is required when a package has executables, so ros2 run can find them

setup.py containing instructions for how to install the package

<package_name> a directory with the same name as our package, used by ROS tools to find our

package, contains __init__.py

The simplest possible package may have a file structure that looks like:

Robotics Page 183

Chapter8 Client Libraries D. T. McGuiness, PhD

8.4 Writing a Simple Publisher & Subscriber

In this exercise, we will create nodes which passes information in the form of string messages to each

other over a topic. The example we will use here is a simple “talker” and “listener” system where

one publishes data and the other subscribes to the topic so it can receive that data.

Creating a ROS Packages To begin, we open a new terminal window and navigate to our

previously created ros2_ws.

Recall that packages should be created in the src directory, not the root / of the

workspace.

So naturally, navigate into the ros2_ws/src directory, and run the package creation command:

C.R. 22

bash1 ros2 pkg create --build-type ament_python --license Apache-2.0 py_pubsub

If everything works well, our terminal will return a message verifying the creation of our package

py_pubsub and all its necessary files and folders.

8.4.1 Writing the Publisher Node

Now that we have a package template, please navigate into ros2_ws/src/py_pubsub/py_pubsub.

To get started, download the example talker code by entering the following command:

C.R. 23

bash1 wget https://raw.githubusercontent.com/ros2/examples/humble/rclpy/topics/ c
minimal_publisher/examples_rclpy_minimal_publisher/publisher_member_function.py↪→

Here the wget command basically access the file in a web-server and then downloads it to

the current working directory. If the code works successfully, there will be a new file named

publisher_member_function.py adjacent to __init__.py.

Now let’s open the code and see what is going on under the hood. The following is the code in full

with snippets and detailed explanation to follow:

C.R. 24

python1 import rclpy

2 from rclpy.node import Node

3

4 from std_msgs.msg import String

5

6

7 class MinimalPublisher(Node):

8

Page 184 Robotics

8.4 Writing a Simple Publisher & Subscriber

C.R. 25

python9 def __init__(self):

10 super().__init__('minimal_publisher')

11 self.publisher_ = self.create_publisher(String, 'topic', 10)

12 timer_period = 0.5 # seconds

13 self.timer = self.create_timer(timer_period, self.timer_callback)

14 self.i = 0

15

16 def timer_callback(self):

17 msg = String()

18 msg.data = 'Hello World: %d' % self.i

19 self.publisher_.publish(msg)

20 self.get_logger().info('Publishing: "%s"' % msg.data)

21 self.i += 1

22

23

24 def main(args=None):

25 rclpy.init(args=args)

26

27 minimal_publisher = MinimalPublisher()

28

29 rclpy.spin(minimal_publisher)

30

31 # Destroy the node explicitly

32 # (optional - otherwise it will be done automatically

33 # when the garbage collector destroys the node object)

34 minimal_publisher.destroy_node()

35 rclpy.shutdown()

36

37

38 if __name__ == '__main__':

39 main()

Deconstructing the Code The first lines of code after the comments import rclpy so its Node

class can be used.9 9As a reminder, the rclpy

is the ROS library written
for Python.

C.R. 26

python1 import rclpy

2 from rclpy.node import Node

The next statement imports the built-in string message type which the node uses to structure the

data it passes on the topic.

C.R. 27

python1 from std_msgs.msg import String

These aforementioned lines represent the node’s dependencies. Recall that dependencies have to be

added to package.xml, which we will have a look at in just a little bit. Next, the MinimalPublisher

class is created, which inherits10 10or is a subclass offrom Node.

Robotics Page 185

Chapter8 Client Libraries D. T. McGuiness, PhD

C.R. 28

python1 class MinimalPublisher(Node):

Following is the definition of the class’s constructor. super().__init__ calls the Node class’s

constructor and gives it our node name, in this case minimal_publisher.

create_publisher declares the node publishes messages of type String,1111which is imported from
the std_msgs.msg module

over a topic named topic,

and that the “queue size” is 10.

Queue size is a required QoS (quality of service) setting which limits the amount of queued

messages if a subscriber is NOT receiving them fast enough.

Next, a timer is created with a callback to execute every 0.5 seconds. self.i is a counter used in

the callback.

C.R. 29

python1 def __init__(self):

2 super().__init__('minimal_publisher')

3 self.publisher_ = self.create_publisher(String, 'topic', 10)

4 timer_period = 0.5 # seconds

5 self.timer = self.create_timer(timer_period, self.timer_callback)

6 self.i = 0

timer_callback creates a message with the counter value appended, and publishes it to the

console with get_logger().info.

C.R. 30

python1 def timer_callback(self):

2 msg = String()

3 msg.data = 'Hello World: %d' % self.i

4 self.publisher_.publish(msg)

5 self.get_logger().info('Publishing: "%s"' % msg.data)

6 self.i += 1

Lastly, the main function is defined.

C.R. 31

python1 def main(args=None):

2 rclpy.init(args=args)

3

4 minimal_publisher = MinimalPublisher()

5

6 rclpy.spin(minimal_publisher)

7

8 # Destroy the node explicitly

9 # (optional - otherwise it will be done automatically

10 # when the garbage collector destroys the node object)

11 minimal_publisher.destroy_node()

12 rclpy.shutdown()

First the rclpy library is initialized, then the node is created, and then it “spins” the node so its

callbacks are called.

Page 186 Robotics

8.4 Writing a Simple Publisher & Subscriber

Adding Dependencies Navigate one level back to the ros2_ws/src/py_pubsub directory, where

the setup.py, setup.cfg, and package.xml files have been created for us. Open package.xml

with our favourite text editor.12 12This could of course be
emacs, or something which
is not emacs so we can see
why emacs is better.As mentioned previously, make sure to fill in the <description>, <maintainer> and <license>

tags:

C.R. 32

xml1 <description>Examples of minimal publisher/subscriber using rclpy</description>

2 <maintainer email="you@email.com">Your Name</maintainer>

3 <license>Apache License 2.0</license>

After the lines above, add the following dependencies corresponding to our node’s import statements:13

13Remember, we need to
let ROS know the
dependencies required by
the python script.

C.R. 33

xml1 <exec_depend>rclpy</exec_depend>

2 <exec_depend>std_msgs</exec_depend>

This declares the package needs rclpy and std_msgs when its code is executed.

Adding An Entry Point Given we have sorted our package manifesto, we need to configure

our python code. Open the setup.py file. Again, match the maintainer, maintainer_email,

description and license fields to our package.xml:

C.R. 34

python1 maintainer='YourName',

2 maintainer_email='you@email.com',

3 description='Examples of minimal publisher/subscriber using rclpy',

4 license='Apache License 2.0',

Add the following line within the console_scripts brackets of the entry_points field:

C.R. 35

python1 entry_points={

2 'console_scripts': [

3 'talker = py_pubsub.publisher_member_function:main',

4],

5 },

Checking the Configuration File The contents of the setup.cfg file should be correctly popu-

lated automatically, like so:

C.R. 36

cfg1 [develop]

2 script_dir=$base/lib/py_pubsub

3 [install]

4 install_scripts=$base/lib/py_pubsub

Robotics Page 187

Chapter8 Client Libraries D. T. McGuiness, PhD

This code is simply telling setuptools to put our executables in lib, because ros2 run will look for

them there. We could build our package now, source the local setup files, and run it, but let’s create

the subscriber node first so we can see the full system at work.

8.4.2 Writing the Subscriber Node

Return to ros2_ws/src/py_pubsub/py_pubsub to create the next node. Enter the following code

in our terminal:

C.R. 37

bash1 wget https://raw.githubusercontent.com/ros2/examples/humble/rclpy/topics/ c
minimal_subscriber/examples_rclpy_minimal_subscriber/subscriber_member_function.py↪→

Now the directory should have these files:

__init__.py, publisher_member_function.py and subscriber_member_function.py

Examining the Code Open the subscriber_member_function.py with our preferred text

editor.

C.R. 38

python1 import rclpy

2 from rclpy.node import Node

3

4 from std_msgs.msg import String

5

6

7 class MinimalSubscriber(Node):

8

9 def __init__(self):

10 super().__init__('minimal_subscriber')

11 self.subscription = self.create_subscription(

12 String,

13 'topic',

14 self.listener_callback,

15 10)

16 self.subscription # prevent unused variable warning

17

18 def listener_callback(self, msg):

19 self.get_logger().info('I heard: "%s"' % msg.data)

20

21

22 def main(args=None):

23 rclpy.init(args=args)

24

25 minimal_subscriber = MinimalSubscriber()

26

27 rclpy.spin(minimal_subscriber)

28

Page 188 Robotics

8.4 Writing a Simple Publisher & Subscriber

C.R. 39

python29 # Destroy the node explicitly

30 # (optional - otherwise it will be done automatically

31 # when the garbage collector destroys the node object)

32 minimal_subscriber.destroy_node()

33 rclpy.shutdown()

34

35

36 if __name__ == '__main__':

37 main()

The subscriber node’s code is nearly identical to the publisher’s. The constructor creates a subscriber

with the same arguments as the publisher.

the topic name and message type used by the publisher and subscriber must match to allow

them to communicate.

C.R. 40

python1 self.subscription = self.create_subscription(

2 String,

3 'topic',

4 self.listener_callback,

5 10)

The subscriber’s constructor and callback don’t include any timer definition, because it doesn’t need

one. Its callback gets called as soon as it receives a message.

The callback definition simply prints an info message to the console, along with the data it received.

Recall that the publisher defines

C.R. 41

python1 def listener_callback(self, msg):

2 self.get_logger().info('I heard: "%s"' % msg.data)

The main definition is almost exactly the same, replacing the creation and spinning of the publisher

with the subscriber.

C.R. 42

python1 minimal_subscriber = MinimalSubscriber()

2

3 rclpy.spin(minimal_subscriber)

Since this node has the same dependencies as the publisher, there’s nothing new to add to package.xml.

The setup.cfg file can also remain untouched.

Adding an Entry Point Reopen setup.py and add the entry point for the subscriber node below

the publisher’s entry point. The entry_points field should now look like this:

Robotics Page 189

Chapter8 Client Libraries D. T. McGuiness, PhD

C.R. 43

python1 entry_points={

2 'console_scripts': [

3 'talker = py_pubsub.publisher_member_function:main',

4 'listener = py_pubsub.subscriber_member_function:main',

5],

6 },

8.4.3 Building and Running

We likely already have the rclpy and std_msgs packages installed as part of our ROS system.

It’s good practice to run rosdep in the root of our workspace (ros2_ws) to check for missing

dependencies before building:

Page 190 Robotics

8.5 Writing a Simple Service and Client

8.5 Writing a Simple Service and Client

When nodes communicate using services, the node which sends a request for data is called the client

node, and the one that responds to the request is the service node. The structure of the request

and response is determined by a .srv file.

The example used here is a simple integer addition system;

one node requests the sum of two (2) integers, and the other responds with the result.

Now let’s write our implementation.

Creating a New Package Let’s begin by opening a new terminal and source our ROS installation

so ros2 commands will work. Once done, please navigate into the ros2_ws directory created in

previously.

Remember that, packages should be created in the src directory and NOT the root of the

workspace. Navigate into ros2_ws/src and create a new package:

C.R. 44

bash1 ros2 pkg create \

2 --build-type ament_python \

3 --license Apache-2.0 py_srvcli \

4 --dependencies rclpy example_interfaces

Our terminal will return a message verifying the creation of our package py_srvcli and all its

necessary files and folders.

The --dependencies argument will automatically add the necessary dependency lines to

package.xml. example_interfaces is the package that includes the .srv file we will need to

structure our requests and responses:

C.R. 45

xml1 int64 a

2 int64 b

3 ---

4 int64 sum

The first two lines are the parameters of the request, and below the dashes is the response.

Updating Package Manifesto Because we used the --dependencies option during package

creation, we don’t have to manually add dependencies to package.xml.

As always, though, make sure to add the description, maintainer email and name, and license

information to package.xml as a good open-source developer.

Robotics Page 191

Chapter8 Client Libraries D. T. McGuiness, PhD

C.R. 46

xml1 <description>Python client server tutorial</description>

2 <maintainer email="you@email.com">Your Name</maintainer>

3 <license>Apache License 2.0</license>

Updating the Configuration Add the same information to the setup.py file for the maintainer,

maintainer_email, description and license fields:

C.R. 47

python1 maintainer='Your Name',

2 maintainer_email='you@email.com',

3 description='Python client server tutorial',

4 license='Apache License 2.0',

8.5.1 Writing the Service Node

Once we are sure we are inside the ros2_ws src py_srvcli py_srvcli directory, we then

create a new file called service_member_function.py and paste the following code within:

C.R. 48

python1 from example_interfaces.srv import AddTwoInts

2

3 import rclpy

4 from rclpy.node import Node

5

6

7 class MinimalService(Node):

8

9 def __init__(self):

10 super().__init__('minimal_service')

11 self.srv = self.create_service(AddTwoInts, 'add_two_ints',

self.add_two_ints_callback)↪→

12

13 def add_two_ints_callback(self, request, response):

14 response.sum = request.a + request.b

15 self.get_logger().info('Incoming request\na: %d b: %d' % (request.a, request.b))

16

17 return response

18

19

20 def main():

21 rclpy.init()

22

23 minimal_service = MinimalService()

24

25 rclpy.spin(minimal_service)

26

27 rclpy.shutdown()

28

Page 192 Robotics

8.5 Writing a Simple Service and Client

C.R. 49

python29

30 if __name__ == '__main__':

31 main()

Let’s look at the code in more detail and what what is going on.

Examining the Code The first import statement imports the AddTwoInts service type from the

example_interfaces package. The following import statement imports the ROS Python client

library (rclpy), and specifically the Node class.

C.R. 50

python1 from example_interfaces.srv import AddTwoInts

2

3 import rclpy

4 from rclpy.node import Node

The MinimalService class constructor initializes the node with the name minimal_service.

Then, it creates a service and defines the type, name, and callback.

C.R. 51

python1 def __init__(self):

2 super().__init__('minimal_service')

3 self.srv = self.create_service(AddTwoInts, 'add_two_ints',

self.add_two_ints_callback)↪→

The definition of the service callback receives the request data, sums it, and returns the sum as a

response.

C.R. 52

python1 def add_two_ints_callback(self, request, response):

2 response.sum = request.a + request.b

3 self.get_logger().info('Incoming request\na: %d b: %d' % (request.a, request.b))

4

5 return response

Finally, the main class initializes the ROS Python client library, instantiates the MinimalService

class to create the service node and spins the node to handle callbacks.

Adding an Entry Point To allow the ros2 run command to run our node, we must add the

entry point to setup.py.14 14This is located in the
ros2_ws src py_srvcli

directory.

To make this happen, all we have to do this add the following line

between the 'console_scripts': brackets:

C.R. 53

python1 'service = py_srvcli.service_member_function:main',

Robotics Page 193

Chapter8 Client Libraries D. T. McGuiness, PhD

8.5.2 Writing the Client Node

Once we are inside the ros2_ws src py_srvcli py_srvcli directory, create a new file called

client_member_function.py and paste the following code within:

C.R. 54

python1 import sys

2

3 from example_interfaces.srv import AddTwoInts

4 import rclpy

5 from rclpy.node import Node

6

7

8 class MinimalClientAsync(Node):

9

10 def __init__(self):

11 super().__init__('minimal_client_async')

12 self.cli = self.create_client(AddTwoInts, 'add_two_ints')

13 while not self.cli.wait_for_service(timeout_sec=1.0):

14 self.get_logger().info('service not available, waiting again...')

15 self.req = AddTwoInts.Request()

16

17 def send_request(self, a, b):

18 self.req.a = a

19 self.req.b = b

20 return self.cli.call_async(self.req)

21

22

23 def main():

24 rclpy.init()

25

26 minimal_client = MinimalClientAsync()

27 future = minimal_client.send_request(int(sys.argv[1]), int(sys.argv[2]))

28 rclpy.spin_until_future_complete(minimal_client, future)

29 response = future.result()

30 minimal_client.get_logger().info(

31 'Result of add_two_ints: for %d + %d = %d' %

32 (int(sys.argv[1]), int(sys.argv[2]), response.sum))

33

34 minimal_client.destroy_node()

35 rclpy.shutdown()

36

37

38 if __name__ == '__main__':

39 main()

Examining the Code As with the service code, we first import the necessary libraries.

C.R. 55

python1 import sys

2

3 from example_interfaces.srv import AddTwoInts

Page 194 Robotics

8.5 Writing a Simple Service and Client

C.R. 56

python4 import rclpy

5 from rclpy.node import Node

The MinimalClientAsync class constructor initializes the node with the name minimal_client_async.

The constructor definition creates a client with the same type and name as the service node. The

type and name must match for the client and service to be able to communicate. The while loop

in the constructor checks if a service matching the type and name of the client is available once a

second. Finally it creates a new AddTwoInts request object.

C.R. 57

python1 def __init__(self):

2 super().__init__('minimal_client_async')

3 self.cli = self.create_client(AddTwoInts, 'add_two_ints')

4 while not self.cli.wait_for_service(timeout_sec=1.0):

5 self.get_logger().info('service not available, waiting again...')

6 self.req = AddTwoInts.Request()

Below the constructor is the send_request method, which will send the request and spin until it

receives the response or fails.

C.R. 58

python1 def send_request(self, a, b):

2 self.req.a = a

3 self.req.b = b

4 return self.cli.call_async(self.req)

Finally we have the main method, which constructs a MinimalClientAsync object, sends the

request using the passed-in command-line arguments, calls rclpy.spin_until_future_complete

to wait for the result, and logs the results.

Adding an Entry Point Similar to the service node, we also have to add an entry point to be

able to run the client node from the command-line. The entry_points field of our setup.py file

should look like this:

C.R. 59

python1 entry_points={

2 'console_scripts': [

3 'service = py_srvcli.service_member_function:main',

4 'client = py_srvcli.client_member_function:main',

5],

6 },

It’s good practice to run rosdep in the root of our workspace (ros2_ws) to check for

missing dependencies before building:

C.R. 60

python1 rosdep install -i --from-path src --rosdistro humble -y

Robotics Page 195

Chapter8 Client Libraries D. T. McGuiness, PhD

Navigate back to the root of our workspace, ros2_ws, and build our new package:

C.R. 61

python1 colcon build --packages-select py_srvcli

Open a new terminal, navigate to ros2_ws, and source the setup files:

C.R. 62

python1 source install/setup.bash

Now run the service node:

C.R. 63

python1 ros2 run py_srvcli service

The node will wait for the client’s request.

Open another terminal and source the setup files from inside ros2_ws again. Start the client

node, followed by any two integers separated by a space. If we chose 2 and 3, for example, the

client would receive a response like this:

C.R. 64

python1 ros2 run py_srvcli client 2 3

text1 [INFO] [minimal_client_async]: Result of add_two_ints: for 2 + 3 = 5

Return to the terminal where our service node is running. We will see that it published log messages

when it received the request:

text1 [INFO] [minimal_service]: Incoming request

2 a: 2 b: 3

Page 196 Robotics

8.6 Creating Custom msg and srv Files

8.6 Creating Custom msg and srv Files

Previously, we utilised message and service interfaces to learn about:

� topics.

� services,

� simple publisher/subscriber, and

� service/client nodes.

It is worth noting, the interfaces we used previously were predefined in those cases.

While it’s good practice to use predefined interface definitions, time will eventually come, where we

will need to define our own messages and services sometimes as well. Here, we will have a look at

the simplest method of creating custom interface definitions.

Creating a New Package Here, we will be creating our custom .msg and .srv files in their own

package, and then utilising them in a separate package.

It is worth stressing, that both packages should be in the same workspace.

As we will use the pub/sub and service/client packages we created previously, make sure we are in

the same workspace as those packages (ros2_ws/src), and then run the following command to

create a new package:

C.R. 65

bash1 ros2 pkg create --build-type ament_cmake --license Apache-2.0 tutorial_interfaces

tutorial_interfaces is the name of the new package. Note that it is, and can only be, an

ament_cmake package,15 15It is basically a build
system for CMake based
packages in ROS. It is a
set of scripts enhancing
CMake and adding
convenience functionality
for package authors.

but this doesn’t restrict in which type of packages we can use our messages

and services. We can create our own custom interfaces in an ament_cmake package, and then use

it in a C++ or Python node, which will be covered later.

The .msg and .srv files are required to be placed in directories called msg and srv respectively.

We can create the directories in ros2_ws src tutorial_interfaces using:

C.R. 66

bash1 mkdir msg srv

Robotics Page 197

Chapter8 Client Libraries D. T. McGuiness, PhD

8.6.1 Creating Custom Definitions

msg Definition In the tutorial_interfaces msg directory we just created, make a new file

called Num.msg with one line of code declaring its data structure:

C.R. 67

text1 int64 num

This is a custom message which transfers a single 64-bit integer called num.

In addition, in the tutorial_interfaces msg directory we’ve just created, make a new file

called Sphere.msg with the following content:

C.R. 68

bash1 geometry_msgs/Point center

2 float64 radius

This custom message uses a message from another message package. As we can see from the first

line in the message, it is geometry_msgs/Point.

srv Definition Let’s go back in the tutorial_interfaces/srv directory we’ve just created a

few moment ago and make a new file called AddThreeInts.srv with the following request and

response structure:

C.R. 69

bash1 int64 a

2 int64 b

3 int64 c

4 ---

5 int64 sum

This is our custom service which requests three (3) integers aptly named a, b, and c, and responds

with an integer called sum.

CMakeLists To convert the interfaces we defined into language-specific code1616This can be either C++
or Python.

so that they can

be used in those languages, let’s add the following lines to our CMakeLists.txt:

C.R. 70

cmake1 find_package(geometry_msgs REQUIRED)

2 find_package(rosidl_default_generators REQUIRED)

3

4 rosidl_generate_interfaces(${PROJECT_NAME}

5 "msg/Num.msg"

6 "msg/Sphere.msg"

7 "srv/AddThreeInts.srv"

8 DEPENDENCIES geometry_msgs # Add packages that above messages

9 #depend on, in this case geometry_msgs for Sphere.msg

10)

Page 198 Robotics

8.6 Creating Custom msg and srv Files

The first argument (library name) in the rosidl_generate_interfaces must start with

the name of the package, e.g., simply ${PROJECT_NAME} or ${PROJECT_NAME}_suffix.

Package.xml Because the interfaces rely on rosidl_default_generators for generating language-

specific code, we need to declare a build tool dependency on it. rosidl_default_runtime is a

runtime or execution-stage dependency, needed to be able to use the interfaces later.

The rosidl_interface_packages is the name of the dependency group which our package,

tutorial_interfaces, should be associated with, declared using the <member_of_group> tag.

Add the following lines within the <package> element of package.xml:

C.R. 71

xml1 <depend>geometry_msgs</depend>

2 <buildtool_depend>rosidl_default_generators</buildtool_depend>

3 <exec_depend>rosidl_default_runtime</exec_depend>

4 <member_of_group>rosidl_interface_packages</member_of_group>

Please pay attention to the last line where we have added the new tag.

Building the Package Now that all the parts of our custom interfaces package are in place, we

can finally build the package. In the root of our workspace (~/ros2_ws), please run the following

command:

C.R. 72

bash1 colcon build --packages-select tutorial_interfaces

Now the interfaces will be discoverable by other ROS packages.

Confirming the Creation In a new terminal, let’s run the following command from within our

workspace (ros2_ws) to source it if it is required:

C.R. 73

bash1 source install/setup.bash

Now we can confirm our interface creation has worked by using the ros2 interface show com-

mand. The output we see in our terminal should look similar to the following:

C.R. 74

bash1 ros2 interface show tutorial_interfaces/msg/Num

text1 int64 num

C.R. 75

bash1 ros2 interface show tutorial_interfaces/msg/Sphere

Robotics Page 199

Chapter8 Client Libraries D. T. McGuiness, PhD

text1 geometry_msgs/Point center

2 float64 x

3 float64 y

4 float64 z

5 float64 radius

C.R. 76

bash1 ros2 interface show tutorial_interfaces/srv/AddThreeInts

text1 int64 a

2 int64 b

3 int64 c

4 ---

5 int64 sum

8.6.2 Testing the Newly Built Interfaces

Time to see our new interface in actiony. A few simple modifications to the nodes, CMakeLists.txt

and package.xml files will allow we to use our new interfaces.

Publisher and Subscriber System: Publisher Code

C.R. 77

python1 import rclpy

2 from rclpy.node import Node

3

4 from tutorial_interfaces.msg import Num # CHANGE

5

6

7 class MinimalPublisher(Node):

8

9 def __init__(self):

10 super().__init__('minimal_publisher')

11 self.publisher_ = self.create_publisher(Num, 'topic', 10) # CHANGE

12 timer_period = 0.5

13 self.timer = self.create_timer(timer_period, self.timer_callback)

14 self.i = 0

15

16 def timer_callback(self):

17 msg = Num() # CHANGE

18 msg.num = self.i # CHANGE

19 self.publisher_.publish(msg)

20 self.get_logger().info('Publishing: "%d"' % msg.num) # CHANGE

21 self.i += 1

22

23

24 def main(args=None):

Page 200 Robotics

8.6 Creating Custom msg and srv Files

C.R. 78

python25 rclpy.init(args=args)

26

27 minimal_publisher = MinimalPublisher()

28

29 rclpy.spin(minimal_publisher)

30

31 minimal_publisher.destroy_node()

32 rclpy.shutdown()

33

34

35 if __name__ == '__main__':

36 main()

Publisher and Subscriber System: Subscriber Code

C.R. 79

python1 import rclpy

2 from rclpy.node import Node

3

4 from tutorial_interfaces.msg import Num # CHANGE

5

6

7 class MinimalSubscriber(Node):

8

9 def __init__(self):

10 super().__init__('minimal_subscriber')

11 self.subscription = self.create_subscription(

12 Num, # CHANGE

13 'topic',

14 self.listener_callback,

15 10)

16 self.subscription

17

18 def listener_callback(self, msg):

19 self.get_logger().info('I heard: "%d"' % msg.num) # CHANGE

20

21

22 def main(args=None):

23 rclpy.init(args=args)

24

25 minimal_subscriber = MinimalSubscriber()

26

27 rclpy.spin(minimal_subscriber)

28

29 minimal_subscriber.destroy_node()

30 rclpy.shutdown()

31

32

33 if __name__ == '__main__':

34 main()

Robotics Page 201

Chapter8 Client Libraries D. T. McGuiness, PhD

We also need to edit our package.xml file to make all the previous python code to work.

C.R. 80

xml1 <exec_depend>tutorial_interfaces</exec_depend>

Once we have done the necessary changes let’s build our package and execute it.

C.R. 81

bash1 colcon build --packages-select py_pubsub

Then open two new terminals, source ros2_ws in each, and run:

C.R. 82

bash1 ros2 run py_pubsub talker

C.R. 83

bash1 ros2 run py_pubsub talker

Since Num.msg relays only an integer, the talker should only be publishing integer values, as

opposed to the string it published previously:

text1 [INFO] [minimal_publisher]: Publishing: '0'

2 [INFO] [minimal_publisher]: Publishing: '1'

3 [INFO] [minimal_publisher]: Publishing: '2'

Service Client System

With a few modifications to the service/client package created previously, we can see AddThreeInts.srv

in action. Since we’ll be changing the original two (2) integer request srv to a three (3) integer

request srv, the output will be slightly different.

Service

C.R. 84

python1 from tutorial_interfaces.srv import AddThreeInts # CHANGE

2

3 import rclpy

4 from rclpy.node import Node

5

6

7 class MinimalService(Node):

8

9 def __init__(self):

10 super().__init__('minimal_service')

11 self.srv = self.create_service(AddThreeInts,

12 'add_three_ints',

13 self.add_three_ints_callback) # CHANGE

14

Page 202 Robotics

8.6 Creating Custom msg and srv Files

C.R. 85

python15 def add_three_ints_callback(self, request, response):

16 response.sum = request.a + request.b + request.c # CHANGE

17 self.get_logger()\

18 .info('Incoming request\na: %d b: %d c: %d' % (request.a, request.b,

request.c)) # CHANGE↪→

19

20 return response

21

22 def main(args=None):

23 rclpy.init(args=args)

24

25 minimal_service = MinimalService()

26

27 rclpy.spin(minimal_service)

28

29 rclpy.shutdown()

30

31 if __name__ == '__main__':

32 main()

Client

C.R. 86

python1 from tutorial_interfaces.srv import AddThreeInts # CHANGE

2 import sys

3 import rclpy

4 from rclpy.node import Node

5

6

7 class MinimalClientAsync(Node):

8

9 def __init__(self):

10 super().__init__('minimal_client_async')

11 self.cli = self.create_client(AddThreeInts, 'add_three_ints') # CHANGE

12 while not self.cli.wait_for_service(timeout_sec=1.0):

13 self.get_logger().info('service not available, waiting again...')

14 self.req = AddThreeInts.Request() # CHANGE

15

16 def send_request(self):

17 self.req.a = int(sys.argv[1])

18 self.req.b = int(sys.argv[2])

19 self.req.c = int(sys.argv[3]) # CHANGE

20 self.future = self.cli.call_async(self.req)

21

22

23 def main(args=None):

24 rclpy.init(args=args)

25

26 minimal_client = MinimalClientAsync()

27 minimal_client.send_request()

28

Robotics Page 203

Chapter8 Client Libraries D. T. McGuiness, PhD

C.R. 87

python29 while rclpy.ok():

30 rclpy.spin_once(minimal_client)

31 if minimal_client.future.done():

32 try:

33 response = minimal_client.future.result()

34 except Exception as e:

35 minimal_client.get_logger().info(

36 'Service call failed %r' % (e,))

37 else:

38 minimal_client.get_logger().info(

39 'Result of add_three_ints: for %d + %d + %d = %d' %

CHANGE↪→

40 (minimal_client.req.a, minimal_client.req.b, minimal_client.req.c,

response.sum)) # CHANGE↪→

41 break

42

43 minimal_client.destroy_node()

44 rclpy.shutdown()

45

46

47 if __name__ == '__main__':

48 main()

To add these features to our package we need to let package.xml know, which for that we need

to write:

C.R. 88

xml1 <exec_depend>tutorial_interfaces</exec_depend>

After making the above edits and saving all the changes, build the package:

Then open two new terminals, source ros2_ws in each, and run:

C.R. 89

bash1 ros2 run py_srvcli service

C.R. 90

bash1 ros2 run py_srvcli client 2 3 1

Page 204 Robotics

8.7 Using Parameters in a Class

8.7 Using Parameters in a Class

When making our own nodes we will sometimes need to add parameters that can be set from the

launch file.

This tutorial will show we how to create those parameters in a Python class, and how to set them in

a launch file.

Creating a Package Open a new terminal and source our ROS installation so that ros2 commands

will work.

Follow these instructions to create a new workspace named ros2_ws.

Recall that packages should be created in the src directory, not the root of the workspace. Navigate

into ros2_ws/src and create a new package:

C.R. 91

bash1 ros2 pkg create --build-type ament_python \

2 --license Apache-2.0 python_parameters \

3 --dependencies rclpy

Our terminal will return a message verifying the creation of our package python_parameters and

all its necessary files and folders.

The --dependencies argument will automatically add the necessary dependency lines to package.xml

and CMakeLists.txt.

Updating the Package Manifesto Because we used the --dependencies option during package

creation, we don’t have to manually add dependencies to package.xml or CMakeLists.txt.

As always, though, make sure to add the description, maintainer email and name, and license

information to package.xml.

C.R. 92

xml1 <description>Python parameter tutorial</description>

2 <maintainer email="you@email.com">Your Name</maintainer>

3 <license>Apache License 2.0</license>

Writing our Python Code Inside the ros2_ws/src/python_parameters/python_parameters

directory, create a new file called python_parameters_node.py and paste the following code within:

C.R. 93

python1 import rclpy

2 import rclpy.node

3

Robotics Page 205

Chapter8 Client Libraries D. T. McGuiness, PhD

C.R. 94

python4 class MinimalParam(rclpy.node.Node):

5 def __init__(self):

6 super().__init__('minimal_param_node')

7

8 self.declare_parameter('my_parameter', 'world')

9

10 self.timer = self.create_timer(1, self.timer_callback)

11

12 def timer_callback(self):

13 my_param = self.get_parameter('my_parameter').get_parameter_value().string_value

14

15 self.get_logger().info('Hello %s!' % my_param)

16

17 my_new_param = rclpy.parameter.Parameter(

18 'my_parameter',

19 rclpy.Parameter.Type.STRING,

20 'world'

21)

22 all_new_parameters = [my_new_param]

23 self.set_parameters(all_new_parameters)

24

25 def main():

26 rclpy.init()

27 node = MinimalParam()

28 rclpy.spin(node)

29

30 if __name__ == '__main__':

31 main()

Code Demystified The import statements at the top are used to import the package dependencies.

The next piece of code creates the class and the constructor. The line;

self.declare_parameter('my_parameter', 'world')

of the constructor creates a parameter with the name my_parameter and a default value of world.

The parameter type is inferred from the default value, so in this case it would be set to a string type.

Next the timer is initialized with a period of 1, which causes the timer_callback function to be

executed once a second.

C.R. 95

python1 class MinimalParam(rclpy.node.Node):

2 def __init__(self):

3 super().__init__('minimal_param_node')

4

5 self.declare_parameter('my_parameter', 'world')

6

7 self.timer = self.create_timer(1, self.timer_callback)

The first line of our timer_callback function gets the parameter my_parameter from the node,

Page 206 Robotics

8.7 Using Parameters in a Class

and stores it in my_param. Next the get_logger function ensures the event is logged. The

set_parameters function then sets the parameter my_parameter back to the default string value

world. In the case that the user changed the parameter externally, this ensures it is always reset

back to the original.

C.R. 96

python1 def timer_callback(self):

2 my_param = self.get_parameter('my_parameter').get_parameter_value().string_value

3

4 self.get_logger().info('Hello %s!' % my_param)

5

6 my_new_param = rclpy.parameter.Parameter(

7 'my_parameter',

8 rclpy.Parameter.Type.STRING,

9 'world'

10)

11 all_new_parameters = [my_new_param]

12 self.set_parameters(all_new_parameters)

Following the timer_callback is our main. Here ROS is initialized, an instance of the MinimalParam

class is constructed, and rclpy.spin starts processing data from the node.

C.R. 97

python1 def main():

2 rclpy.init()

3 node = MinimalParam()

4 rclpy.spin(node)

5

6 if __name__ == '__main__':

7 main()

(Optional) Adding a Parameter Descriptor Optionally, we can set a descriptor for the parameter.

Descriptors allow we to specify a text description of the parameter and its constraints, like making

it read-only, specifying a range, etc. For that to work, the __init__ code has to be changed to:

C.R. 98

python1 # ...

2

3 class MinimalParam(rclpy.node.Node):

4 def __init__(self):

5 super().__init__('minimal_param_node')

6

7 from rcl_interfaces.msg import ParameterDescriptor

8 my_parameter_descriptor = ParameterDescriptor(description='This parameter is

mine!')↪→

9

10 self.declare_parameter('my_parameter', 'world', my_parameter_descriptor)

11

12 self.timer = self.create_timer(1, self.timer_callback)

The rest of the code remains the same. Once we run the node, we can then run ros2 param describe

Robotics Page 207

Chapter8 Client Libraries D. T. McGuiness, PhD

/minimal_param_node my_parameter to see the type and description.

Adding an Entry Point Open the setup.py file. Again, match the maintainer, maintainer_email,

description and license fields to our package.xml:

C.R. 99

python1 maintainer='YourName',

2 maintainer_email='you@email.com',

3 description='Python parameter tutorial',

4 license='Apache License 2.0',

Add the following line within the console_scripts brackets of the entry_points field:

C.R. 100

python1 entry_points={

2 'console_scripts': [

3 'minimal_param_node = python_parameters.python_parameters_node:main',

4],

5 },

Building and Running the Code It’s good practice to run rosdep in the root of our workspace

(ros2_ws) to check for missing dependencies before building:

C.R. 101

bash1 rosdep install -i --from-path src --rosdistro humble -y

Navigate back to the root of our workspace, ros2_ws, and build our new package:

C.R. 102

bash1 colcon build --packages-select python_parameters

Open a new terminal, navigate to ros2_ws, and source the setup files:

C.R. 103

bash1 source install/setup.bash

Now run the node. The terminal should return Hello world! every second:

C.R. 104

bash1 ros2 run python_parameters minimal_param_node

text1 [INFO] [parameter_node]: Hello world!

Now we can see the default value of our parameter, but we want to be able to set it ourself. There

are two ways to accomplish this.

Changing Output using the Console Make sure the node is running:

Page 208 Robotics

8.7 Using Parameters in a Class

C.R. 105

bash1 ros2 run python_parameters minimal_param_node

Open another terminal, source the setup files from inside ros2_ws again, and enter the following

line:

C.R. 106

bash1 ros2 param list

There we will see the custom parameter my_parameter. To change it, simply run the following line

in the console:

C.R. 107

bash1 ros2 param set /minimal_param_node my_parameter earth

We know it went well if we get the output Set parameter successful. If we look at the other terminal,

we should see the output change to [INFO] [minimal_param_node]: Hello earth!

Since the node afterwards set the parameter back to world, further outputs show:

[INFO] [minimal_param_node]: Hello world!

Changing using the Launch File We can also set parameters in a launch file, but first we will

need to add a launch directory. Inside the ros2_ws/src/python_parameters/ directory, create a

new directory called launch. In there, create a new file called python_parameters_launch.py

C.R. 108

python1 from launch import LaunchDescription

2 from launch_ros.actions import Node

3

4

5 def generate_launch_description():

6 return LaunchDescription([

7 Node(

8 package='python_parameters',

9 executable='minimal_param_node',

10 name='custom_minimal_param_node',

11 output='screen',

12 emulate_tty=True,

13 parameters=[

14 {'my_parameter': 'earth'}

15]

16)

17])

Here we can see that we set my_parameter to earth when we launch our node parameter_node.

By adding the two lines below, we ensure our output is printed in our console.

C.R. 109

bash1 output="screen",

2 emulate_tty=True,

Robotics Page 209

Chapter8 Client Libraries D. T. McGuiness, PhD

Now open the setup.py file. Add the import statements to the top of the file, and the other new

statement to the data_files parameter to include all launch files:

C.R. 110

bash1 import os

2 from glob import glob

3 # ...

4

5 setup(

6 # ...

7 data_files=[

8 # ...

9 (os.path.join('share', package_name, 'launch'), glob('launch/*')),

10]

11)

Open a console and navigate to the root of our workspace, ros2_ws, and build our new package:

C.R. 111

bash1 colcon build --packages-select python_parameters

Then source the setup files in a new terminal:

C.R. 112

bash1 source install/setup.bash

Now run the node using the launch file we have just created. The terminal should return the following

message the first time:

C.R. 113

bash1 ros2 launch python_parameters python_parameters_launch.py

text1 [INFO] [custom_minimal_param_node]: Hello earth!

Further outputs should show [INFO] [minimal_param_node]: Hello world! every second.

Page 210 Robotics

8.8 Managing Dependencies

8.8 Managing Dependencies

8.8.1 Explaining Rosdep

rosdep is a dependency management utility that can work with packages and external libraries. It is a

command-line utility for identifying and installing dependencies to build or install a package. rosdep

is not a package manager in its own right; it is a meta-package manager that uses its own knowledge

of the system and the dependencies to find the appropriate package to install on a particular platform.

The actual installation is done using the system package manager (e.g. apt on Debian/Ubuntu, dnf

on Fedora/RHEL, etc).

It is most often invoked before building a workspace, where it is used to install the dependencies of

the packages within that workspace.

It has the ability to work over a single package or over a directory of packages (e.g. workspace).

While the name suggests it is for ROS, rosdep is semi-agnostic to ROS. We can utilize this

powerful tool in non-ROS software projects by installing it as a standalone Python package.

Successfully running rosdep relies on rosdep keys to be available, which can be downloaded

from a public git repository with a few simple commands.

8.8.2 Explaining Pacakge Manifesto

The package.xml is the file in our software where rosdep finds the set of dependencies. It is important

that the list of dependencies in the package.xml is complete and correct, which allows all of the

tooling to determine the packages dependencies. Missing or incorrect dependencies can lead to

users not being able to use our package, to packages in a workspace being built out-of-order, and to

packages not being able to be released.

The dependencies in the package.xml file are generally referred to as “rosdep keys”. These depen-

dencies are manually populated in the package.xml file by the package’s creators and should be an

exhaustive list of any non-builtin libraries and packages it requires.

These are represented in the following tags (see REP-149 for the full specification):

<depend> These are dependencies that should be provided at both build time and run time for our

package. For C++ packages, if in doubt, use this tag. Pure Python packages generally don’t

have a build phase, so should never use this and should use <exec_depend> instead.

<build_depend> If we only use a particular dependency for building our package, and not at

execution time, we can use the <build_depend> tag.

With this type of dependency, an installed binary of our package does not require that particular

Robotics Page 211

Chapter8 Client Libraries D. T. McGuiness, PhD

package to be installed.

However, that can create a problem if our package exports a header that includes a header

from this dependency. In that case we also need a <build_export_depend>.

Page 212 Robotics

8.9 Creating an Action

8.9 Creating an Action

We learned about actions previously in the Understanding actions tutorial. Like the other communi-

cation types and their respective interfaces (topics/msg and services/srv), we can also custom-define

actions in our packages. This tutorial shows you how to define and build an action that we can use

with the action server and action client we will write in the next tutorial.

Before we start, let’s setup everything and make sure the requisites are in order:

C.R. 114

bash1 mkdir -p ros2_ws/src # you can reuse an existing workspace

2 cd ros2_ws/src

3 ros2 pkg create action_tutorials_interfaces

Defining an Action Actions are defined in .action files of the form:

C.R. 115

text1 # Request

2 ---

3 # Result

4 ---

5 # Feedback

An action definition is made up of three message definitions separated by ---.

A request message is sent from an action client to an action server initiating a new goal.

A result message is sent from an action server to an action client when a goal is done.

Feedback messages are periodically sent from an action server to an action client with updates about

a goal.

An instance of an action is typically referred to as a goal.

Say we want to define a new action “Fibonacci” for computing the Fibonacci sequence.

Create an action directory in our ROS package action_tutorials_interfaces:

C.R. 116

bash1 cd action_tutorials_interfaces

2 mkdir action

Within the action directory, create a file called Fibonacci.action with the following contents:

C.R. 117

text1 int32 order

2 ---

3 int32[] sequence

4 ---

Robotics Page 213

Chapter8 Client Libraries D. T. McGuiness, PhD

C.R. 118

text5 int32[] partial_sequence

The goal request is the order of the Fibonacci sequence we want to compute, the result is the final

sequence, and the feedback is the partial_sequence computed so far.

Building an Action Before we can use the new Fibonacci action type in our code, we must pass

the definition to the rosidl code generation pipeline.

This is accomplished by adding the following lines to our CMakeLists.txt before the ament_package()

line, in the action_tutorials_interfaces:

C.R. 119

cmake1 find_package(rosidl_default_generators REQUIRED)

2

3 rosidl_generate_interfaces(${PROJECT_NAME}

4 "action/Fibonacci.action"

5)

We should also add the required dependencies to our package.xml:

C.R. 120

xml1 <buildtool_depend>rosidl_default_generators</buildtool_depend>

2 <depend>action_msgs</depend>

3 <member_of_group>rosidl_interface_packages</member_of_group>

Note, we need to depend on action_msgs since action definitions include additional metadata (e.g.

goal IDs).

We should now be able to build the package containing the Fibonacci action definition:

C.R. 121

bash1 cd ~/ros2_ws # Change to the root of the workspace

2 colcon build # Build

We’re done!

By convention, action types will be prefixed by their package name and the word action. So when we

want to refer to our new action, it will have the full name action_tutorials_interfaces/action/Fibonacci.

We can check that our action built successfully with the command line tool:

C.R. 122

bash1 . install/setup.bash # Source our workspace.

2 # Check that our action definition exists

3 ros2 interface show action_tutorials_interfaces/action/Fibonacci

We should see the Fibonacci action definition printed to the screen.

Page 214 Robotics

8.10 Writing an Action Server and Client

8.10 Writing an Action Server and Client

Actions are a form of asynchronous communication in ROS. Action clients send goal requests to

action servers. Action servers send goal feedback and results to action clients.

Writing an Action Server Let’s focus on writing an action server that computes the Fibonacci

sequence using the action we created in the Creating an action tutorial.

Until now, we’ve created packages and used ros2 run to run our nodes. To keep things simple in this

tutorial, however, we’ll scope the action server to a single file. If we’d like to see what a complete

package for the actions tutorials looks like, check out action_tutorials.

Open a new file in our home directory, let’s call it fibonacci_action_server.py, and add the

following code:

C.R. 123

python1 import rclpy

2 from rclpy.action import ActionServer

3 from rclpy.node import Node

4

5 from action_tutorials_interfaces.action import Fibonacci

6

7

8 class FibonacciActionServer(Node):

9

10 def __init__(self):

11 super().__init__('fibonacci_action_server')

12 self._action_server = ActionServer(

13 self,

14 Fibonacci,

15 'fibonacci',

16 self.execute_callback)

17

18 def execute_callback(self, goal_handle):

19 self.get_logger().info('Executing goal...')

20 result = Fibonacci.Result()

21 return result

22

23

24 def main(args=None):

25 rclpy.init(args=args)

26

27 fibonacci_action_server = FibonacciActionServer()

28

29 rclpy.spin(fibonacci_action_server)

30

31

32 if __name__ == '__main__':

33 main()

Robotics Page 215

Chapter8 Client Libraries D. T. McGuiness, PhD

8.11 Writing a Launch File

The launch system in ROS is responsible for helping the user describe the configuration of their

system and then execute it as described. The configuration of the system includes:

� what programs to run, where to run them,

� what arguments to pass them, and

� ROS-specific conventions which make it easy to reuse components throughout the system by

giving them each a different configuration

It is also responsible for monitoring the state of the processes launched, and reporting and/or reacting

to changes in the state of those processes.

Launch files written in XML, YAML, or Python can start and stop different nodes as well as trigger

and act on various events.

The package providing this framework is launch_ros, which uses the non-ROS-specific

launch framework underneath.

So now we got the preliminary information out of the way, let us start with working on writing our

own launch file.

Creating a Launch Directory We start by creating a new directory to store our launch files:

C.R. 124

bash1 mkdir launch

Writing our Launch File Let’s put together a ROS launch file using the turtlesim package and

its executables. As mentioned previously, this can either be in XML, YAML, or Python. However for

the sake of coherence, we shall only look at the Python version of it.

Please copy and paste the code into launch turtlesim_mimic_launch.py file:

C.R. 125

python1 from launch import LaunchDescription

2 from launch_ros.actions import Node

3

4

5 def generate_launch_description():

6 return LaunchDescription([

7 Node(

8 package='turtlesim',

9 namespace='turtlesim1',

10 executable='turtlesim_node',

Page 216 Robotics

8.11 Writing a Launch File

C.R. 126

python11 name='sim'

12),

13 Node(

14 package='turtlesim',

15 namespace='turtlesim2',

16 executable='turtlesim_node',

17 name='sim'

18),

19 Node(

20 package='turtlesim',

21 executable='mimic',

22 name='mimic',

23 remappings=[

24 ('/input/pose', '/turtlesim1/turtle1/pose'),

25 ('/output/cmd_vel', '/turtlesim2/turtle1/cmd_vel'),

26]

27)

28])

Understanding the Launch File All of the launch files above are launching a system of three

(3) nodes, all from the turtlesim package. The goal of the system is to launch two (2) turtlesim

windows, and have one turtle mimic the movements of the other.

When launching the two (2) turtlesim nodes, the only difference between them is their namespace

values. Unique namespaces allow the system to start two (2) nodes without node name or topic

name conflicts. Both turtles in this system receive commands over the same topic and publish their

pose over the same topic.

With unique namespaces, messages meant for different turtles can be distinguished.

The final node is also from the turtlesim package, but a different executable:

mimic.

This node has added configuration details in the form of remappings. mimic’s input pose topic

is remapped to turtlesim1 turtle1 pose and it’s output cmd_vel topic to turtlesim2 turtle1

cmd_vel .

This means mimic will subscribe to turtlesim1 sim pose topic and republish it for turtlesim2 sim

velocity command topic to subscribe to.

In other words, turtlesim2 will mimic turtlesim1’s movements.

Now to see what is going on with the launch file. These import statements pull in some Python

launch modules.

Robotics Page 217

Chapter8 Client Libraries D. T. McGuiness, PhD

C.R. 127

python1 from launch import LaunchDescription

2 from launch_ros.actions import Node

Next, the launch description itself begins:

C.R. 128

python1 def generate_launch_description():

2 return LaunchDescription([

3 Node(

4])

The first two actions in the launch description launch the two turtlesim windows:

C.R. 129

python1 Node(

2 package='turtlesim',

3 namespace='turtlesim1',

4 executable='turtlesim_node',

5 name='sim'

6),

7 Node(

8 package='turtlesim',

9 namespace='turtlesim2',

10 executable='turtlesim_node',

11 name='sim'

12),

The final action launches the mimic node with the remaps:

C.R. 130

python1 Node(

2 package='turtlesim',

3 executable='mimic',

4 name='mimic',

5 remappings=[

6 ('/input/pose', '/turtlesim1/turtle1/pose'),

7 ('/output/cmd_vel', '/turtlesim2/turtle1/cmd_vel'),

8]

9)

Launching the Package To run the launch file created above, enter into the directory we created

earlier and run the following command:

C.R. 131

bash1 cd launch

2 ros2 launch turtlesim_mimic_launch.py

Two turtlesim windows will open, and we will see the following [INFO] messages telling we which

nodes our launch file has started:

Page 218 Robotics

8.11 Writing a Launch File

C.R. 132

text1 [INFO] [launch]: Default logging verbosity is set to INFO

2 [INFO] [turtlesim_node-1]: process started with pid [11714]

3 [INFO] [turtlesim_node-2]: process started with pid [11715]

4 [INFO] [mimic-3]: process started with pid [11716]

To see the system in action, open a new terminal and run the ros2 topic pub command on the
turtlesim1 turtle1 cmd_vel topic to get the first turtle moving:

C.R. 133

bash1 ros2 topic pub -r 1 \

2 /turtlesim1/turtle1/cmd_vel geometry_msgs/msg/Twist \

3 "{linear: {x: 2.0, y: 0.0, z: 0.0}, angular: {x: 0.0, y: 0.0, z: -1.8}}"

We will see both turtles following the same path.

Checking the Graph While the system is still running, open a new terminal and run rqt_graph

to get a better idea of the relationship between the nodes in our launch file.

Run the command:

C.R. 134

bash1 rqt_graph

A hidden node (the ros2 topic pub command we ran) is publishing data to the turtlesim1 turtle1

cmd_vel topic on the left, which the turtlesim1 sim node is subscribed to. The rest of the graph

shows what was described earlier: mimic is subscribed to turtlesim1 sim ’s pose topic, and publishes

to turtlesim2 sim ’s velocity command topic.

Robotics Page 219

Chapter9
Transform Library

Table of Contents

9.1 A Gentle Introduction . 221

9.2 Writing a Static Broadcaster . 225

9.3 Writing a Listener . 230

9.4 Adding a Frame . 235

9.5 Writing a Broadcaster . 242

9.1 A Gentle Introduction

tf2 is the transform library, which lets the user keep track of multiple coordinate frames over time.

tf2 maintains the relationship between coordinate frames in a tree structure buffered in time and

lets the user transform points, vectors, etc., between any two (2) coordinate frames at any desired

point in time.

Figure 9.1: A robot is comprised of numerous
coordinate system as can be seen from this
robot and needs to be constantly be kept in
check which tf2 allows [ros2iron2025].

A robotic system typically various types of 3D coordinate

frames which change over time.

Examples include a world frame, base frame,

gripper frame, head frame, etc.

The key use-case for tf2 is to keep track of all these frames

over time, and allows us to ask questions like:

� Where was the head frame relative to the world frame

5 seconds ago?

Chapter9 Transform Library D. T. McGuiness, PhD

� What is the pose of the object in my gripper relative

to my base?

� What is the current pose of the base frame in the map

frame?

tf2 can operate in a distributed system. This means all the information about the coordinate frames

of a robot is available to all ROS components on any computer in the system. In addition, tf2 can

have every component in your distributed system build its own transform information database or

have a central node that gathers and stores all transform information.

A Simple Test

To get started with the tf2 library, we are going to run a demo and see some of the power of tf2

in a multi-robot example using turtlesim, which we should already be familiar with.

Installing the Demo We will start by installing the demo package and its dependencies, like we

did previously. This might have been already installed depending on the way ROS was installed, but

it doesn’t hurt to run the command again:

C.R. 1

bash1 sudo apt-get install \

2 ros-humble-rviz2 \

3 ros-humble-turtle-tf2-py \

4 ros-humble-tf2-ros \

5 ros-humble-tf2-tools \

6 ros-humble-turtlesim

Now that we’ve installed the turtle_tf2_py tutorial package let’s run the demo. First, open a

new terminal and source your ROS installation so that ros2 commands will work.11While the docker
container setup has the
source predefined, it is

nevertheless a good
practice to do this if you
are working with multiple

versions.

Then run the

following command:

C.R. 2

bash1 ros2 launch turtle_tf2_py turtle_tf2_demo.launch.py

You will see the turtlesim start with two (2) turtles. In the second terminal window type the following

command:

C.R. 3

bash1 ros2 run turtlesim turtle_teleop_key

Once the turtlesim is started you can drive the central turtle around in the turtlesim using the

keyboard arrow keys, select the second terminal window so that our keystrokes will be captured to

drive the turtle.

You can see that one turtle continuously moves to follow the turtle you are driving around.

Page 222 Robotics

9.1 A Gentle Introduction

Looking at the Behaviour This demo is using the tf2 library to create three (3) coordinate

frames:

1. a world frame,

2. a turtle1 frame, and

3. a turtle2 frame.

In this tutorial, we use a tf2 broadcaster to publish the turtle coordinate frames and a tf2 listener
to calculate the difference in the turtle frames and move one turtle to follow the other.

Useful Tools

It is time to see how tf2 is being used to create this simple exercise. We can use tf2_tools to

look at what tf2 is doing behind the scenes.

Viewing the Frames If we want to see visually what is going on, we can use view_frames which

creates a diagram of the frames being broadcast by tf2 over ROS.

As of this writing view_frames only works on Linux.

C.R. 4

bash1 ros2 run tf2_tools view_frames

text1 Listening to tf data during 5 seconds...

2 Generating graph in frames.pdf file...

Here a tf2 listener is listening to the frames which are being broadcast over ROS and drawing a

tree of how the frames are connected.

If we want to view the tree, open the resulting frames.pdf with a PDF viewer.

Here we can see three (3) frames that are broadcast by tf2:

world, turtle1, and turtle2.

The world frame is the parent of the turtle1 and turtle2 frames. view_frames also reports

some diagnostic information about when the oldest and most recent frame transforms were received

and how fast the tf2 frame is published to tf2 for debugging purposes.

Using Echo tf2_echo reports the transform between any two (2) frames broadcast over ROS.

The syntax of this command is as follows:

Robotics Page 223

Chapter9 Transform Library D. T. McGuiness, PhD

C.R. 5

bash1 ros2 run tf2_ros tf2_echo [source_frame] [target_frame]

Let’s look at the transform of the turtle2 frame with respect to turtle1 frame which is equivalent

to:

C.R. 6

bash1 ros2 run tf2_ros tf2_echo turtle2 turtle1

text1 At time 1683385337.850619099

2 - Translation: [2.157, 0.901, 0.000]

3 - Rotation: in Quaternion [0.000, 0.000, 0.172, 0.985]

4 - Rotation: in RPY (radian) [0.000, -0.000, 0.345]

5 - Rotation: in RPY (degree) [0.000, -0.000, 19.760]

6 - Matrix:

7 0.941 -0.338 0.000 2.157

8 0.338 0.941 0.000 0.901

9 0.000 0.000 1.000 0.000

10 0.000 0.000 0.000 1.000

11 At time 1683385338.841997774

12 - Translation: [1.256, 0.216, 0.000]

13 - Rotation: in Quaternion [0.000, 0.000, -0.016, 1.000]

14 - Rotation: in RPY (radian) [0.000, 0.000, -0.032]

15 - Rotation: in RPY (degree) [0.000, 0.000, -1.839]

16 - Matrix:

17 0.999 0.032 0.000 1.256

18 -0.032 0.999 -0.000 0.216

19 -0.000 0.000 1.000 0.000

20 0.000 0.000 0.000 1.000

We will see the transform displayed as the tf2_echo listener receives the frames broadcast over

ROS. As we drive our turtle around we will see the transform change as the two (2) turtles move

relative to each other.

rviz2 and tf2 rviz2 is a three-dimensional visualization platform in ROS. On the one hand, it

can realize the graphical display of external information, and on the other hand, it can also release

control information to the object through rviz, so as to realize the monitoring and control of the

robot. It is also useful for examining tf2 frames. Let’s look at our turtle frames using rviz2 by

starting it with a configuration file using the -d option:

C.R. 7

bash1 ros2 run rviz2 rviz2 -d \

2 $(ros2 pkg prefix --share turtle_tf2_py)/rviz/turtle_rviz.rviz

In the side bar you will see the frames broadcasted by tf2. As you drive the turtle around you will

see the frames move in rviz.

Page 224 Robotics

9.2 Writing a Static Broadcaster

9.2 Writing a Static Broadcaster

Publishing static transforms is useful to define the relationship between a robot base and its sensors

or non-moving parts.

For example, it is easiest to reason about laser scan measurements in a frame at the

centre of the laser scanner.

In this section, we will be covering the basics of static transforms, which consists of two (2) parts:

� In the first part we will write code to publish static transforms to tf2.

� In the second part we will explain how to use the command-line static_transform_publisher

executable tool in tf2_ros.

In the next two (2) sections we will write the code to reproduce the exercise we did at the beginning

of the chapter.

Creating the Package As with almost all ROS applications, we first need to create a package will

be used for this section and the following ones. The package called learning_tf2_py will depend

on:

geometry_msgs, python3-numpy, rclpy, tf2_ros_py, and turtlesim

This package will be used in the following sections as well.

Open a new terminal and source your ROS installation so that ros2 commands will work. Navigate

to workspace’s src folder and create a new package:

C.R. 8

bash1 ros2 pkg create --build-type ament_python \

2 --license Apache-2.0 \

3 -- learning_tf2_py

Once the command has been executed, our terminal will return a message verifying the creation of

our package learning_tf2_py and all its necessary files and folders.

Writing a Static Broadcaster Node We will start, of course, by first creating the source files.

Within the src learning_tf2_py learning_tf2_py directory download the example static

broadcaster code by entering the following command:

C.R. 9

bash1 wget https://raw.githubusercontent.com/ros/geometry_tutorials/humble/turtle_tf2_py/ c
turtle_tf2_py/static_turtle_tf2_broadcaster.py↪→

Now let’s open the file called static_turtle_tf2_broadcaster.py and have a look at it.

Robotics Page 225

Chapter9 Transform Library D. T. McGuiness, PhD

Looking at the Code Now let’s look at the code that is relevant to publishing the static turtle

pose to tf2. The first lines import required packages. First we import the TransformStamped

from the geometry_msgs, which provides us a template for the message that we will publish to the

transformation tree.

C.R. 10

python1 from geometry_msgs.msg import TransformStamped

Afterwards, rclpy is imported so its Node class can be used.

C.R. 11

python1 import rclpy

2 from rclpy.node import Node

The tf2_ros package provides a StaticTransformBroadcaster to make the publishing of static

transforms easy. To use the StaticTransformBroadcaster, we need to import it from the

tf2_ros module.

C.R. 12

python1 from tf2_ros.static_transform_broadcaster import StaticTransformBroadcaster

The StaticFramePublisher class constructor initializes the node with the name static_turtle_tf2_broadcaster.

Then, StaticTransformBroadcaster is created, which will send one static transformation upon

the startup.

C.R. 13

python1 self.tf_static_broadcaster = StaticTransformBroadcaster(self)

2 self.make_transforms(transformation)

Here we create a TransformStamped object, which will be the message we will send over once

populated. Before passing the actual transform values we need to give it the appropriate metadata.

� We need to give the transform being published a timestamp and well just stamp it with the

current time, self.get_clock().now()

� Then we need to set the name of the parent frame of the link were creating, in this case

world.

� Finally, we need to set the name of the child frame of the link were creating

C.R. 14

python1 t = TransformStamped()

2

3 t.header.stamp = self.get_clock().now().to_msg()

4 t.header.frame_id = 'world'

5 t.child_frame_id = transformation[1]

Here we populate the 6D pose (translation and rotation) of the turtle.

Page 226 Robotics

9.2 Writing a Static Broadcaster

C.R. 15

python1 t.transform.translation.x = float(transformation[2])

2 t.transform.translation.y = float(transformation[3])

3 t.transform.translation.z = float(transformation[4])

4 quat = quaternion_from_euler(

5 float(transformation[5]), float(transformation[6]), float(transformation[7]))

6 t.transform.rotation.x = quat[0]

7 t.transform.rotation.y = quat[1]

8 t.transform.rotation.z = quat[2]

9 t.transform.rotation.w = quat[3]

Finally, we broadcast static transform using the sendTransform() function.

C.R. 16

python1 self.tf_static_broadcaster.sendTransform(t)

Updating the Package Information Navigate one level back to the src learning_tf2_py

directory, where the setup.py, setup.cfg, and package.xml files have been created for you.

Open package.xml and make sure to fill in the <description>, <maintainer> and <license> tags:

C.R. 17

xml1 <description>Learning tf2 with rclpy</description>

2 <maintainer email="you@email.com">Your Name</maintainer>

3 <license>Apache License 2.0</license>

After the lines above, add the following dependencies corresponding to your nodes import statements:

C.R. 18

xml1 <exec_depend>geometry_msgs</exec_depend>

2 <exec_depend>python3-numpy</exec_depend>

3 <exec_depend>rclpy</exec_depend>

4 <exec_depend>tf2_ros_py</exec_depend>

5 <exec_depend>turtlesim</exec_depend>

This declares the required geometry_msgs, python3-numpy, rclpy, tf2_ros_py, and turtlesim

dependencies when its code is executed.

Adding an Entry Point To allow the ros2 run command to run your node, you must add the entry

point to setup.py. Add the following line between the 'console_scripts': brackets:

C.R. 19

python1 'static_turtle_tf2_broadcaster = learning_tf2_py.static_turtle_tf2_broadcaster:main',

Build Its good practice to run rosdep in the root of your workspace to check for missing dependencies

before building:

Robotics Page 227

Chapter9 Transform Library D. T. McGuiness, PhD

C.R. 20

bash1 rosdep install -i --from-path src --rosdistro humble -y

Still in the root of your workspace, build your new package:

C.R. 21

bash1 colcon build --packages-select learning_tf2_py

Open a new terminal, navigate to the root of your workspace, and source the setup files:

C.R. 22

bash1 . install/setup.bash

Run Now run the static_turtle_tf2_broadcaster node:

C.R. 23

bash1 ros2 run \

2 learning_tf2_py static_turtle_tf2_broadcaster mystaticturtle 0 0 1 0 0 0

This sets a turtle pose broadcast for mystaticturtle to float 1 meter above the ground.

We can now check that the static transform has been published by echoing the tf_static topic If

everything is well you should see a single static transform:

C.R. 24

bash1 ros2 topic echo /tf_static

text1 transforms:

2 - header:

3 stamp:

4 sec: 1622908754

5 nanosec: 208515730

6 frame_id: world

7 child_frame_id: mystaticturtle

8 transform:

9 translation:

10 x: 0.0

11 y: 0.0

12 z: 1.0

13 rotation:

14 x: 0.0

15 y: 0.0

16 z: 0.0

17 w: 1.0

The Proper way to Publish Static Transforms

This tutorial aimed to show how StaticTransformBroadcaster can be used to publish static

transforms. In your real development process you shouldnt have to write this code yourself

Page 228 Robotics

9.2 Writing a Static Broadcaster

and should use the dedicated tf2_ros tool to do so. tf2_ros provides an executable named

static_transform_publisher that can be used either as a commandline tool or a node that you

can add to your launchfiles.

The following command publishes a static coordinate transform to tf2 resulting in a 1 meter offset

in z and no rotation between the frames world and mystaticturtle. In ROS 2, roll/pitch/yaw refers

to rotation in radians about the x/y/z-axis, respectively.

C.R. 25

bash1 ros2 run tf2_ros \

2 static_transform_publisher \

3 --x 0 --y 0 --z 1 \

4 --yaw 0 --pitch 0 --roll 0 \

5 --frame-id world --child-frame-id mystaticturtle

The following command publishes the same static coordinate transform to tf2, but using quaternion

representation for the rotation.

C.R. 26

bash1 ros2 run tf2_ros \

2 static_transform_publisher \

3 --x 0 --y 0 --z 1 \

4 --qx 0 --qy 0 --qz 0 --qw 1 \

5 --frame-id world --child-frame-id mystaticturtle

static_transform_publisher is designed both as a command-line tool for manual use, as well

as for use within launch files for setting static transforms. For example:

C.R. 27

python1 from launch import LaunchDescription

2 from launch_ros.actions import Node

3

4

5 def generate_launch_description():

6 return LaunchDescription([

7 Node(

8 package='tf2_ros',

9 executable='static_transform_publisher',

10 arguments=[

11 '--x', '0', '--y', '0', '--z', '1',

12 '--yaw', '0', '--pitch', '0', '--roll',

13 '0', '--frame-id', 'world', '--child-frame-id', 'mystaticturtle']

14),

15])

Note that all arguments except for –frame-id and –child-frame-id are optional; if a particular option

isnt specified, then the identity will be assumed.

Robotics Page 229

Chapter9 Transform Library D. T. McGuiness, PhD

9.3 Writing a Listener

Writing the Listener Node Lets first create the source files. Go to the learning_tf2_py pack-

age we created in the previous tutorial. Inside the src learning_tf2_py learning_tf2_py

directory download the example listener code by entering the following command:

C.R. 28

bash1 wget https://raw.githubusercontent.com/ros/geometry_tutorials/humble/turtle_tf2_py/ c
turtle_tf2_py/turtle_tf2_listener.py↪→

Now open the file called turtle_tf2_listener.py using your preferred text editor.

C.R. 29

python1 import math

2

3 from geometry_msgs.msg import Twist

4

5 import rclpy

6 from rclpy.node import Node

7

8 from tf2_ros import TransformException

9 from tf2_ros.buffer import Buffer

10 from tf2_ros.transform_listener import TransformListener

11

12 from turtlesim.srv import Spawn

13

14

15 class FrameListener(Node):

16

17 def __init__(self):

18 super().__init__('turtle_tf2_frame_listener')

19

20 # Declare and acquire `target_frame` parameter

21 self.target_frame = self.declare_parameter(

22 'target_frame', 'turtle1').get_parameter_value().string_value

23

24 self.tf_buffer = Buffer()

25 self.tf_listener = TransformListener(self.tf_buffer, self)

26

27 # Create a client to spawn a turtle

28 self.spawner = self.create_client(Spawn, 'spawn')

29 # Boolean values to store the information

30 # if the service for spawning turtle is available

31 self.turtle_spawning_service_ready = False

32 # if the turtle was successfully spawned

33 self.turtle_spawned = False

34

35 # Create turtle2 velocity publisher

36 self.publisher = self.create_publisher(Twist, 'turtle2/cmd_vel', 1)

37

38 # Call on_timer function every second

39 self.timer = self.create_timer(1.0, self.on_timer)

Page 230 Robotics

9.3 Writing a Listener

C.R. 30

python40

41 def on_timer(self):

42 # Store frame names in variables that will be used to

43 # compute transformations

44 from_frame_rel = self.target_frame

45 to_frame_rel = 'turtle2'

46

47 if self.turtle_spawning_service_ready:

48 if self.turtle_spawned:

49 # Look up for the transformation between target_frame and turtle2 frames

50 # and send velocity commands for turtle2 to reach target_frame

51 try:

52 t = self.tf_buffer.lookup_transform(

53 to_frame_rel,

54 from_frame_rel,

55 rclpy.time.Time())

56 except TransformException as ex:

57 self.get_logger().info(

58 f'Could not transform {to_frame_rel} to {from_frame_rel}: {ex}')

59 return

60

61 msg = Twist()

62 scale_rotation_rate = 1.0

63 msg.angular.z = scale_rotation_rate * math.atan2(

64 t.transform.translation.y,

65 t.transform.translation.x)

66

67 scale_forward_speed = 0.5

68 msg.linear.x = scale_forward_speed * math.sqrt(

69 t.transform.translation.x ** 2 +

70 t.transform.translation.y ** 2)

71

72 self.publisher.publish(msg)

73 else:

74 if self.result.done():

75 self.get_logger().info(

76 f'Successfully spawned {self.result.result().name}')

77 self.turtle_spawned = True

78 else:

79 self.get_logger().info('Spawn is not finished')

80 else:

81 if self.spawner.service_is_ready():

82 # Initialize request with turtle name and coordinates

83 # Note that x, y and theta are defined as floats in turtlesim/srv/Spawn

84 request = Spawn.Request()

85 request.name = 'turtle2'

86 request.x = float(4)

87 request.y = float(2)

88 request.theta = float(0)

89 # Call request

90 self.result = self.spawner.call_async(request)

91 self.turtle_spawning_service_ready = True

92 else:

Robotics Page 231

Chapter9 Transform Library D. T. McGuiness, PhD

C.R. 31

python93 # Check if the service is ready

94 self.get_logger().info('Service is not ready')

95

96

97 def main():

98 rclpy.init()

99 node = FrameListener()

100 try:

101 rclpy.spin(node)

102 except KeyboardInterrupt:

103 pass

104

105 rclpy.shutdown()

Examining the Code Now, lets take a look at the code that is relevant to get access to frame

transformations. The tf2_ros package provides an implementation of a TransformListener to help

make the task of receiving transforms easier.

C.R. 32

python1 from tf2_ros.transform_listener import TransformListener

Here, we create a TransformListener object. Once the listener is created, it starts receiving tf2

transformations over the wire, and buffers them for up to 10 seconds.

C.R. 33

python1 self.tf_listener = TransformListener(self.tf_buffer, self)

Finally, we query the listener for a specific transformation. We call lookup_transform method

with following arguments:

� Target frame

� Source frame

� The time at which we want to transform

Providing rclpy.time.Time() will just get us the latest available transform. All this is wrapped in

a try-except block to handle possible exceptions.

Adding an Entry Point To allow the ros2 run command to run your node, you must add the entry

point to setup.py (located in the src learning_tf2_py directory).

Add the following line between the 'console_scripts': brackets:

C.R. 34

python1 'turtle_tf2_listener = learning_tf2_py.turtle_tf2_listener:main',

Page 232 Robotics

9.3 Writing a Listener

Updating the Launch Files Open the launch file called turtle_tf2_demo.launch.py in the

src learning_tf2_py launch directory with your text editor, add two new nodes to the launch

description, add a launch argument, and add the imports. The resulting file should look like:

C.R. 35

python1 from launch import LaunchDescription

2 from launch.actions import DeclareLaunchArgument

3 from launch.substitutions import LaunchConfiguration

4

5 from launch_ros.actions import Node

6

7

8 def generate_launch_description():

9 return LaunchDescription([

10 Node(

11 package='turtlesim',

12 executable='turtlesim_node',

13 name='sim'

14),

15 Node(

16 package='learning_tf2_py',

17 executable='turtle_tf2_broadcaster',

18 name='broadcaster1',

19 parameters=[

20 {'turtlename': 'turtle1'}

21]

22),

23 DeclareLaunchArgument(

24 'target_frame', default_value='turtle1',

25 description='Target frame name.'

26),

27 Node(

28 package='learning_tf2_py',

29 executable='turtle_tf2_broadcaster',

30 name='broadcaster2',

31 parameters=[

32 {'turtlename': 'turtle2'}

33]

34),

35 Node(

36 package='learning_tf2_py',

37 executable='turtle_tf2_listener',

38 name='listener',

39 parameters=[

40 {'target_frame': LaunchConfiguration('target_frame')}

41]

42),

43])

This will declare a target_frame launch argument, start a broadcaster for second turtle that we

will spawn and listener that will subscribe to those transformations.

Robotics Page 233

Chapter9 Transform Library D. T. McGuiness, PhD

Build Run rosdep in the root of your workspace to check for missing dependencies.

C.R. 36

bash1 rosdep install -i --from-path src --rosdistro humble -y

Still in the root of your workspace, build your package:

C.R. 37

bash1 colcon build --packages-select learning_tf2_py

Open a new terminal, navigate to the root of your workspace, and source the setup files:

C.R. 38

bash1 . install/setup.bash

Run Now youre ready to start your full turtle demo:

C.R. 39

bash1 ros2 launch learning_tf2_py turtle_tf2_demo.launch.py

You should see the turtle sim with two turtles. In the second terminal window type the following

command:

C.R. 40

bash1 ros2 run turtlesim turtle_teleop_key

To see if things work, simply drive around the first turtle using the arrow keys (make sure your

terminal window is active, not your simulator window), and youll see the second turtle following the

first one!

Page 234 Robotics

9.4 Adding a Frame

9.4 Adding a Frame

Previously, we’ve recreated the turtle demo by writing a tf2 broadcaster and a tf2 listener. This

tutorial will teach you how to add extra fixed and dynamic frames to the transformation tree. In

fact, adding a frame in tf2 is very similar to creating the tf2 broadcaster, but this example will show

you some additional features of tf2.

For many tasks related to transformations, it is easier to think inside a local frame. For example, it

is easiest to reason about laser scan measurements in a frame at the center of the laser scanner. tf2

allows you to define a local frame for each sensor, link, or joint in your system. When transforming

from one frame to another, tf2 will take care of all the hidden intermediate frame transformations

that are introduced.

Viewing the Tree tf2 builds up a tree structure of frames and, thus, does not allow a closed loop

in the frame structure. This means that a frame only has one single parent, but it can have multiple

children. Currently, our tf2 tree contains three frames: world, turtle1 and turtle2. The two turtle

frames are children of the world frame. If we want to add a new frame to tf2, one of the three

existing frames needs to be the parent frame, and the new one will become its child frame.

Writing the Fixed Frame Broadcaster In our turtle example, well add a new frame carrot1, which

will be the child of the turtle1. This frame will serve as the goal for the second turtle.

Lets first create the source files. Go to the learning_tf2_py package we created in the previous

tutorials. Inside the src/learning_tf2_py/learning_tf2_py directory download the fixed frame

broadcaster code by entering the following command:

C.R. 41

bash1 wget https://raw.githubusercontent.com/ros/geometry_tutorials/humble/turtle_tf2_py/ c
turtle_tf2_py/fixed_frame_tf2_broadcaster.py↪→

Now open the file called fixed_frame_tf2_broadcaster.py.

C.R. 42

python1 from geometry_msgs.msg import TransformStamped

2

3 import rclpy

4 from rclpy.node import Node

5

6 from tf2_ros import TransformBroadcaster

7

8

9 class FixedFrameBroadcaster(Node):

10

11 def __init__(self):

12 super().__init__('fixed_frame_tf2_broadcaster')

13 self.tf_broadcaster = TransformBroadcaster(self)

Robotics Page 235

Chapter9 Transform Library D. T. McGuiness, PhD

C.R. 43

python14 self.timer = self.create_timer(0.1, self.broadcast_timer_callback)

15

16 def broadcast_timer_callback(self):

17 t = TransformStamped()

18

19 t.header.stamp = self.get_clock().now().to_msg()

20 t.header.frame_id = 'turtle1'

21 t.child_frame_id = 'carrot1'

22 t.transform.translation.x = 0.0

23 t.transform.translation.y = 2.0

24 t.transform.translation.z = 0.0

25 t.transform.rotation.x = 0.0

26 t.transform.rotation.y = 0.0

27 t.transform.rotation.z = 0.0

28 t.transform.rotation.w = 1.0

29

30 self.tf_broadcaster.sendTransform(t)

31

32

33 def main():

34 rclpy.init()

35 node = FixedFrameBroadcaster()

36 try:

37 rclpy.spin(node)

38 except KeyboardInterrupt:

39 pass

40

41 rclpy.shutdown()

The code is very similar to the tf2 broadcaster tutorial example and the only difference is that the

transform here does not change over time.

Examining the Code Lets take a look at the key lines in this piece of code. Here we create a

new transform, from the parent turtle1 to the new child carrot1. The carrot1 frame is 2 meters

offset in y axis in terms of the turtle1 frame.

C.R. 44

python1 t = TransformStamped()

2

3 t.header.stamp = self.get_clock().now().to_msg()

4 t.header.frame_id = 'turtle1'

5 t.child_frame_id = 'carrot1'

6 t.transform.translation.x = 0.0

7 t.transform.translation.y = 2.0

8 t.transform.translation.z = 0.0

Adding an Entry Point To allow the ros2 run command to run your node, you must add the entry

point to setup.py (located in the src/learning_tf2_py directory).

Page 236 Robotics

9.4 Adding a Frame

Add the following line between the 'console_scripts': brackets:

C.R. 45

python1 'fixed_frame_tf2_broadcaster = learning_tf2_py.fixed_frame_tf2_broadcaster:main',

Writing the Launch File Now lets create a launch file for this example. With your text

editor, create a new file called turtle_tf2_fixed_frame_demo.launch.py in the src

learning_tf2_py launch directory, and add the following lines:

C.R. 46

python1 from launch import LaunchDescription

2 from launch.actions import IncludeLaunchDescription

3 from launch.substitutions import PathJoinSubstitution

4 from launch_ros.actions import Node

5 from launch_ros.substitutions import FindPackageShare

6

7

8 def generate_launch_description():

9 return LaunchDescription([

10 IncludeLaunchDescription(

11 PathJoinSubstitution([

12 FindPackageShare('learning_tf2_py'), 'launch',

'turtle_tf2_demo.launch.py'])↪→

13),

14 Node(

15 package='learning_tf2_py',

16 executable='fixed_frame_tf2_broadcaster',

17 name='fixed_broadcaster',

18),

19])

This launch file imports the required packages and then creates a demo_nodes variable that will

store nodes that we created in the previous tutorials launch file.

The last part of the code will add our fixed carrot1 frame to the turtlesim world using our

fixed_frame_tf2_broadcaster node.

C.R. 47

python1 Node(

2 package='learning_tf2_py',

3 executable='fixed_frame_tf2_broadcaster',

4 name='fixed_broadcaster',

5),

Build Run rosdep in the root of your workspace to check for missing dependencies.

C.R. 48

bash1 rosdep install -i --from-path src --rosdistro humble -y

Still in the root of your workspace, build your package:

Robotics Page 237

Chapter9 Transform Library D. T. McGuiness, PhD

C.R. 49

bash1 colcon build --packages-select learning_tf2_py

Open a new terminal, navigate to the root of your workspace, and source the setup files:

C.R. 50

bash1 . install/setup.bash

Run Now you can start the turtle broadcaster demo:

C.R. 51

bash1 ros2 launch learning_tf2_py turtle_tf2_fixed_frame_demo.launch.py

You should notice that the new carrot1 frame appeared in the transformation tree.

If you drive the first turtle around, you should notice that the behavior didnt change from the

previous tutorial, even though we added a new frame. Thats because adding an extra frame does

not affect the other frames and our listener is still using the previously defined frames.

Therefore if we want our second turtle to follow the carrot instead of the first turtle, we need

to change value of the target_frame. This can be done two ways. One way is to pass the

target_frame argument to the launch file directly from the console:

C.R. 52

bash1 ros2 launch learning_tf2_py \

2 turtle_tf2_fixed_frame_demo.launch.py \

3 target_frame:=carrot1

The second way is to update the launch file. To do so, open the turtle_tf2_fixed_frame_demo.launch.py

file, and add the 'target_frame': 'carrot1' parameter via launch_argumentsargument.

C.R. 53

python1 def generate_launch_description():

2 demo_nodes = IncludeLaunchDescription(

3 ...,

4 launch_arguments={'target_frame': 'carrot1'}.items(),

5)

Now rebuild the package, restart the turtle_tf2_fixed_frame_demo.launch.py, and youll see

the second turtle following the carrot instead of the first turtle!

Writing the Dynamic Frame Broadcaster

The extra frame we published in this tutorial is a fixed frame that doesnt change over time in

relation to the parent frame. However, if you want to publish a moving frame you can code the

broadcaster to change the frame over time. Lets change our carrot1 frame so that it changes

relative to turtle1 frame over time. Go to the learning_tf2_py package we created in the previous

Page 238 Robotics

9.4 Adding a Frame

tutorial. Inside the src learning_tf2_py learning_tf2_py directory download the dynamic

frame broadcaster code by entering the following command:

C.R. 54

bash1 wget https://raw.githubusercontent.com/ros/geometry_tutorials/humble/turtle_tf2_py/ c
turtle_tf2_py/dynamic_frame_tf2_broadcaster.py↪→

Now open the file called dynamic_frame_tf2_broadcaster.py:

C.R. 55

python1 import math

2

3 from geometry_msgs.msg import TransformStamped

4

5 import rclpy

6 from rclpy.node import Node

7

8 from tf2_ros import TransformBroadcaster

9

10

11 class DynamicFrameBroadcaster(Node):

12

13 def __init__(self):

14 super().__init__('dynamic_frame_tf2_broadcaster')

15 self.tf_broadcaster = TransformBroadcaster(self)

16 self.timer = self.create_timer(0.1, self.broadcast_timer_callback)

17

18 def broadcast_timer_callback(self):

19 seconds, _ = self.get_clock().now().seconds_nanoseconds()

20 x = seconds * math.pi

21

22 t = TransformStamped()

23 t.header.stamp = self.get_clock().now().to_msg()

24 t.header.frame_id = 'turtle1'

25 t.child_frame_id = 'carrot1'

26 t.transform.translation.x = 10 * math.sin(x)

27 t.transform.translation.y = 10 * math.cos(x)

28 t.transform.translation.z = 0.0

29 t.transform.rotation.x = 0.0

30 t.transform.rotation.y = 0.0

31 t.transform.rotation.z = 0.0

32 t.transform.rotation.w = 1.0

33

34 self.tf_broadcaster.sendTransform(t)

35

36

37 def main():

38 rclpy.init()

39 node = DynamicFrameBroadcaster()

40 try:

41 rclpy.spin(node)

42 except KeyboardInterrupt:

43 pass

44

Robotics Page 239

Chapter9 Transform Library D. T. McGuiness, PhD

C.R. 56

python45 rclpy.shutdown()

Examining the Code Instead of a fixed definition of our x and y offsets, we are using the sin()

and cos() functions on the current time so that the offset of carrot1 is constantly changing.

C.R. 57

bash1 seconds, _ = self.get_clock().now().seconds_nanoseconds()

2 x = seconds * math.pi

3 ...

4 t.transform.translation.x = 10 * math.sin(x)

5 t.transform.translation.y = 10 * math.cos(x)

Adding an Entry Point To allow the ros2 run command to run your node, you must add the entry

point to setup.py (located in the src learning_tf2_py directory).

Add the following line between the 'console_scripts': brackets:

C.R. 58

python1 'dynamic_frame_tf2_broadcaster = learning_tf2_py.dynamic_frame_tf2_broadcaster:main',

Writing the Launch File To test this code, create a new launch file turtle_tf2_dynamic_frame_demo.launch.py

in the src learning_tf2_py launch directory and paste the following code:

C.R. 59

python1 from launch import LaunchDescription

2 from launch.actions import IncludeLaunchDescription

3 from launch.substitutions import PathJoinSubstitution

4 from launch_ros.actions import Node

5 from launch_ros.substitutions import FindPackageShare

6

7

8 def generate_launch_description():

9 return LaunchDescription([

10 IncludeLaunchDescription(

11 PathJoinSubstitution([

12 FindPackageShare('learning_tf2_py'), 'launch',

'turtle_tf2_demo.launch.py']),↪→

13 launch_arguments={'target_frame': 'carrot1'}.items(),

14),

15 Node(

16 package='learning_tf2_py',

17 executable='dynamic_frame_tf2_broadcaster',

18 name='dynamic_broadcaster',

19),

20])

Buld Run rosdep in the root of your workspace to check for missing dependencies.

Page 240 Robotics

9.4 Adding a Frame

C.R. 60

bash1 rosdep install -i --from-path src --rosdistro humble -y

Still in the root of your workspace, build your package:

C.R. 61

bash1 colcon build --packages-select learning_tf2_py

Open a new terminal, navigate to the root of your workspace, and source the setup files:

C.R. 62

bash1 . install/setup.bash

Run Now you can start the dynamic frame demo:

C.R. 63

bash1 ros2 launch learning_tf2_py turtle_tf2_dynamic_frame_demo.launch.py

You should see that the second turtle is following the carrots position that is constantly changing.

Robotics Page 241

Chapter9 Transform Library D. T. McGuiness, PhD

9.5 Writing a Broadcaster

Writing the Broadaster Node Lets first create the source files. Go to the learning_tf2_py

package we created in the previous tutorial. Inside the src learning_tf2_py learning_tf2_py

directory download the example broadcaster code by entering the following command:

C.R. 64

bash1 wget https://raw.githubusercontent.com/ros/geometry_tutorials/humble/turtle_tf2_py/ c
turtle_tf2_py/turtle_tf2_broadcaster.py↪→

Now open the file called turtle_tf2_broadcaster.py using your preferred text editor.

C.R. 65

python1 import math

2

3 from geometry_msgs.msg import TransformStamped

4

5 import numpy as np

6

7 import rclpy

8 from rclpy.node import Node

9

10 from tf2_ros import TransformBroadcaster

11

12 from turtlesim.msg import Pose

13

14

15 def quaternion_from_euler(ai, aj, ak):

16 ai /= 2.0

17 aj /= 2.0

18 ak /= 2.0

19 ci = math.cos(ai)

20 si = math.sin(ai)

21 cj = math.cos(aj)

22 sj = math.sin(aj)

23 ck = math.cos(ak)

24 sk = math.sin(ak)

25 cc = ci*ck

26 cs = ci*sk

27 sc = si*ck

28 ss = si*sk

29

30 q = np.empty((4,))

31 q[0] = cj*sc - sj*cs

32 q[1] = cj*ss + sj*cc

33 q[2] = cj*cs - sj*sc

34 q[3] = cj*cc + sj*ss

35

36 return q

37

38

39 class FramePublisher(Node):

Page 242 Robotics

9.5 Writing a Broadcaster

C.R. 66

python40

41 def __init__(self):

42 super().__init__('turtle_tf2_frame_publisher')

43

44 # Declare and acquire `turtlename` parameter

45 self.turtlename = self.declare_parameter(

46 'turtlename', 'turtle').get_parameter_value().string_value

47

48 # Initialize the transform broadcaster

49 self.tf_broadcaster = TransformBroadcaster(self)

50

51 # Subscribe to a turtle{1}{2}/pose topic and call handle_turtle_pose

52 # callback function on each message

53 self.subscription = self.create_subscription(

54 Pose,

55 f'/{self.turtlename}/pose',

56 self.handle_turtle_pose,

57 1)

58 self.subscription # prevent unused variable warning

59

60 def handle_turtle_pose(self, msg):

61 t = TransformStamped()

62

63 # Read message content and assign it to

64 # corresponding tf variables

65 t.header.stamp = self.get_clock().now().to_msg()

66 t.header.frame_id = 'world'

67 t.child_frame_id = self.turtlename

68

69 # Turtle only exists in 2D, thus we get x and y translation

70 # coordinates from the message and set the z coordinate to 0

71 t.transform.translation.x = msg.x

72 t.transform.translation.y = msg.y

73 t.transform.translation.z = 0.0

74

75 # For the same reason, turtle can only rotate around one axis

76 # and this why we set rotation in x and y to 0 and obtain

77 # rotation in z axis from the message

78 q = quaternion_from_euler(0, 0, msg.theta)

79 t.transform.rotation.x = q[0]

80 t.transform.rotation.y = q[1]

81 t.transform.rotation.z = q[2]

82 t.transform.rotation.w = q[3]

83

84 # Send the transformation

85 self.tf_broadcaster.sendTransform(t)

86

87

88 def main():

89 rclpy.init()

90 node = FramePublisher()

91 try:

92 rclpy.spin(node)

Robotics Page 243

Chapter9 Transform Library D. T. McGuiness, PhD

C.R. 67

python93 except KeyboardInterrupt:

94 pass

95

96 rclpy.shutdown()

Examining the Code Now, lets take a look at the code that is relevant to publishing the turtle

pose to tf2. Firstly, we define and acquire a single parameter turtlename, which specifies a turtle

name, e.g. turtle1 or turtle2.

C.R. 68

python1 self.turtlename = self.declare_parameter(

2 'turtlename', 'turtle').get_parameter_value().string_value

Afterward, the node subscribes to topic {self.turtlename}/pose and runs function handle_turtle_pose

on every incoming message.

C.R. 69

python1 self .subscription = self.create_subscription(

2 Pose,

3 f'/{self.turtlename}/pose',

4 self.handle_turtle_pose,

5 1)

Now, we create a TransformStamped object and give it the appropriate metadata.

� We need to give the transform being published a timestamp, and well just stamp it with the

current time by calling self.get_clock().now(). This will return the current time used by

the Node.

� Then we need to set the name of the parent frame of the link were creating, in this case world.

� Finally, we need to set the name of the child node of the link were creating, in this case this is

the name of the turtle itself.

The handler function for the turtle pose message broadcasts this turtles translation and rotation,

and publishes it as a transform from frame world to frame turtleX.

C.R. 70

python1 t = TransformStamped()

2

3 # Read message content and assign it to

4 # corresponding tf variables

5 t.header.stamp = self.get_clock().now().to_msg()

6 t.header.frame_id = 'world'

7 t.child_frame_id = self.turtlename

Here we copy the information from the 3D turtle pose into the 3D transform.

Page 244 Robotics

9.5 Writing a Broadcaster

C.R. 71

python1 # Turtle only exists in 2D, thus we get x and y translation

2 # coordinates from the message and set the z coordinate to 0

3 t.transform.translation.x = msg.x

4 t.transform.translation.y = msg.y

5 t.transform.translation.z = 0.0

6

7 # For the same reason, turtle can only rotate around one axis

8 # and this why we set rotation in x and y to 0 and obtain

9 # rotation in z axis from the message

10 q = quaternion_from_euler(0, 0, msg.theta)

11 t.transform.rotation.x = q[0]

12 t.transform.rotation.y = q[1]

13 t.transform.rotation.z = q[2]

14 t.transform.rotation.w = q[3]

Finally we take the transform that we constructed and pass it to the sendTransform method of the

TransformBroadcaster that will take care of broadcasting.

C.R. 72

python1 # Send the transformation

2 self.tf_broadcaster.sendTransform(t)

Adding an Entry Point To allow the ros2 run command to run your node, you must add the entry

point to setup.py

Add the following line between the 'console_scripts': brackets:

C.R. 73

python1 # Send the transformation

2 self.tf_broadcaster.sendTransform(t)

Writing the Launch File Now create a launch file for this demo. Create a launch folder in

the src learning_tf2_py directory. With your text editor, create a new file called

turtle_tf2_demo.launch.py in the launch folder, and add the following lines:

C.R. 74

python1 from launch import LaunchDescription

2 from launch_ros.actions import Node

3

4

5 def generate_launch_description():

6 return LaunchDescription([

7 Node(

8 package='turtlesim',

9 executable='turtlesim_node',

10 name='sim'

11),

12 Node(

13 package='learning_tf2_py',

Robotics Page 245

Chapter9 Transform Library D. T. McGuiness, PhD

C.R. 75

python14 executable='turtle_tf2_broadcaster',

15 name='broadcaster1',

16 parameters=[

17 {'turtlename': 'turtle1'}

18]

19),

20])

Examining the Code First we import required modules from the launch and launch_ros packages.

It should be noted that launch is a generic launching framework (not ROS 2 specific) and launch_ros

has ROS 2 specific things, like nodes that we import here.

C.R. 76

python1 from launch import LaunchDescription

2 from launch_ros.actions import Node

Now we run our nodes that start the turtlesim simulation and broadcast turtle1 state to the tf2

using our turtle_tf2_broadcaster node.

C.R. 77

python1 Node(

2 package='turtlesim',

3 executable='turtlesim_node',

4 name='sim'

5),

6 Node(

7 package='learning_tf2_py',

8 executable='turtle_tf2_broadcaster',

9 name='broadcaster1',

10 parameters=[

11 {'turtlename': 'turtle1'}

12]

13),

Adding Dependencies Navigate one level back to the learning_tf2_py directory, where the

setup.py, setup.cfg, and package.xml files are located.

Open package.xml with your text editor. Add the following dependencies corresponding to your

launch files import statements:

C.R. 78

xml1 <exec_depend>launch</exec_depend>

2 <exec_depend>launch_ros</exec_depend>

This declares the additional required launch and launch_ros dependencies when its code is executed.

Make sure to save the file.

Page 246 Robotics

9.5 Writing a Broadcaster

Updating Setup File Reopen setup.py and add the line so that the launch files from the launch

folder will be installed. The data_files field should now look like this:

C.R. 79

python1 data_files=[

2 ...

3 (os.path.join('share', package_name, 'launch'), glob('launch/*')),

4],

Also add the appropriate imports at the top of the file:

C.R. 80

python1 import os

2 from glob import glob

Build Run rosdep in the root of your workspace to check for missing dependencies.

C.R. 81

bash1 rosdep install -i --from-path src --rosdistro humble -y

Still in the root of your workspace, build your package:

C.R. 82

bash1 colcon build --packages-select learning_tf2_py

Open a new terminal, navigate to the root of your workspace, and source the setup files:

C.R. 83

bash1 . install/setup.bash

Run Now run the launch file that will start the turtlesim simulation node and turtle_tf2_broadcaster

node:

C.R. 84

bash1 ros2 launch learning_tf2_py turtle_tf2_demo.launch.py

In the second terminal window type the following command:

C.R. 85

bash1 ros2 run turtlesim turtle_teleop_key

You will now see that the turtlesim simulation has started with one turtle that you can control. Now,

use the tf2_echo tool to check if the turtle pose is actually getting broadcast to tf2:

C.R. 86

bash1 ros2 run tf2_ros tf2_echo world turtle1

This should show you the pose of the first turtle. Drive around the turtle using the arrow keys

(make sure your turtle_teleop_key terminal window is active, not your simulator window). In

your console output you will see something similar to this:

Robotics Page 247

Chapter9 Transform Library D. T. McGuiness, PhD

text1 At time 1714913843.708748879

2 - Translation: [4.541, 3.889, 0.000]

3 - Rotation: in Quaternion [0.000, 0.000, 0.999, -0.035]

4 - Rotation: in RPY (radian) [0.000, -0.000, -3.072]

5 - Rotation: in RPY (degree) [0.000, -0.000, -176.013]

6 - Matrix:

7 -0.998 0.070 0.000 4.541

8 -0.070 -0.998 0.000 3.889

9 0.000 0.000 1.000 0.000

10 0.000 0.000 0.000 1.000

If you run tf2_echo for the transform between the world and turtle2, you should not see a transform,

because the second turtle is not there yet. However, as soon as we add the second turtle in the

next tutorial, the pose of turtle2 will be broadcast to tf2.

Page 248 Robotics

	Mobile Robot Localisation
	Introduction
	The problems of Noise and Aliasing
	Localisation v. Hard-Coded Navigation
	Representing Belief
	Representing Maps
	Probabilistic Map-Based Localisation
	Other Examples of Localisation Methods
	Building Maps

	Welcome to Linux
	Learning the Linux Command Line
	Installation
	Docker

	Command Line Fundamentals
	Introduction
	The Structure of Commands
	Helpful Keyboard Shortcuts for the Terminal
	When you need help with Commands
	Additional Information

	Working with Files and Folders
	Introduction
	A Detailed Look in ls Command
	Creating and Removing Folders
	Move, Copy and Delete Files and Folders
	Role to Users and sudo
	File Permissions
	Hard and Symbolic Links
	The Linux File System
	Common Command-Line Tools and Tasks
	Advanced Topics

	Installation
	ROS 2 Humble Hawksbill
	Auto-Install Script

	ROS Concepts
	Introduction
	Publisher and Subscriber Architecture
	Nodes - The Building Blocks
	The Discovery Process
	Communication Between Nodes
	Topics
	Services
	Actions
	Parameters
	Working with Command Line
	Launch File

	Command Line Tools
	Setting the Environment
	Turtles and Graphs
	A Deeper Look into Nodes
	Working with Topics
	Working with Services
	Working with Parameters
	A Practical Look into Actions
	Launching Nodes

	Client Libraries
	Getting Started with Colcon
	Creating a Workspace
	Creating a Package
	Writing a Simple Publisher & Subscriber
	Writing a Simple Service and Client
	Creating Custom msg and srv Files
	Using Parameters in a Class
	Managing Dependencies
	Creating an Action
	Writing an Action Server and Client
	Writing a Launch File

	Transform Library
	A Gentle Introduction
	Writing a Static Broadcaster
	Writing a Listener
	Adding a Frame
	Writing a Broadcaster

